Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2013_42_2_a0, author = {T. S. Tinyukova}, title = {Research of the difference {Schr\"odinger} operator for some physical models}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--57}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a0/} }
TY - JOUR AU - T. S. Tinyukova TI - Research of the difference Schr\"odinger operator for some physical models JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2013 SP - 3 EP - 57 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a0/ LA - ru ID - IIMI_2013_42_2_a0 ER -
%0 Journal Article %A T. S. Tinyukova %T Research of the difference Schr\"odinger operator for some physical models %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2013 %P 3-57 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a0/ %G ru %F IIMI_2013_42_2_a0
T. S. Tinyukova. Research of the difference Schr\"odinger operator for some physical models. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 42 (2013) no. 2, pp. 3-57. http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a0/
[1] Büttiker M., Imry Y., Landauer R., Pinhas S., “Generalizet many-channel conductance formula with application to small rings”, Phys. Rev. B, 31:10 (1985), 6207–6215 | DOI
[2] Miroshnichenko A. E., Kivshar Y. S., “Engineering Fano resonances in discrete arrays”, Phys. Rev. E, 72:5 (2005), 056611, 7 pp. | DOI | MR
[3] Bellissard J., Schulz-Baldes H., “Scattering theory for lattice operators in dimension $d\geqslant 3$”, Rev. Math. Phys., 24 (2012), 1250020, 51 pp. | DOI | MR | Zbl
[4] Karachalios N. I., “The number of bound states for a discrete Schrödinger operator on $Z_N$, $N\geqslant 1$, lattices”, J. Phys. A: Math. Theor., 41:45 (2008), 455201 | DOI | MR | Zbl
[5] Ziletti A., Borgonovi F., Celardo G. L., Izrailev F. M., Karlan L., Zelevinsky V. G., “Coherent transport in multi-branch circuits”, Phys. Rev. B, 85:5 (2012), 052201, 5 pp. | DOI
[6] Ptitsyna N., Shipman S. P., A lattice model for resonance in open periodic wavequides, 2010, arXiv: 1101.0170v1 [math-ph] | MR
[7] Chuburin Yu. P., “A discrete Schrödinger operator on a graph”, Theor. Math. Phys., 165:1 (2010), 1335–1347 | DOI | DOI | Zbl
[8] Arseniev A. A., “Resonances and tunneling in the tight-binding approximation to scattering in a quantum billiard”, Theor. Math. Phys., 141:1 (2004), 1415–1426 | DOI | DOI | MR | Zbl
[9] Lakaev S. N., Khalkhuzhaev A. M., “Spectrum of the two-particle Schrödinger operator on a lattice”, Theor. Math. Phys., 155:2 (2008), 754–765 | DOI | DOI | MR | Zbl
[10] Chung F., Yau S.-T., “Discrete Green's Function”, Journal of Combinatorial Theory, Series A, 91:1–2 (2000), 191–214 | DOI | MR | Zbl
[11] Rivkind A., Krivolapov Y., Fishman S., Soffer A., “Eigenvalue repulsion estimates and some applications for the one-dimensional Anderson model”, J. Phys. A.: Math. Theor., 44:30 (2011), 305206, 19 pp. | DOI | MR | Zbl
[12] Rabinovich V. S., Roch S., “Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics”, J. Phys. A: Math. Theor., 42:38 (2009), 385207, 21 pp. | DOI | MR | Zbl
[13] Dutkay D. E., Jorgensen P. E. T., “Spectral theory for discrete Laplacians”, Complex Analysis and Operator Theory, 4:1 (2010), 1–38 | DOI | MR | Zbl
[14] Evans M. Harrell II, Manwah Lilian Wong, On the behavior at infinity of solutions to difference equations in Schrödinger form, 2011, arXiv: 1109.4691v1 [math.CA]
[15] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Mir, M., 1977, 360 pp. | MR
[16] Reed M., Simon B., Methods of modern mathematical physics, v. III, Scattering theory, Mir, M., 1982, 443 pp. | MR
[17] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Mir, M., 1982, 428 pp. | MR
[18] Tinyukova T. S., Chuburin Yu. P., “Quasi-levels of the discrete Schrödinger equation with a decreasion potential on a graph”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 3, 104–113
[19] Tinyukova T. S., “Quasi-levels of the discrete Schrödinger operator for a quantum waveguide”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 2, 88–97 | MR
[20] Tinyukova T. S., “The Lippmann-Schwinger equation for quantum wires”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 99–104 | MR
[21] Tinyukova T. S., “Scattering in the case of the discrete Schrödinger operator for intersected quantum wires”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 74–84
[22] Tinyukova T. S., “The discrete Schrödinger equation for a quantum waveguide”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 4, 80–93
[23] Tinyukova T. S., Chuburin Yu. P., “Electron scattering by a crystal layer”, Theor. Math. Phys., 176:3 (2013), 1207–1219 | DOI
[24] Berezin F. A., Schubin M. A., Schrödinger equaion, Moscow State University, M., 1983, 392 pp. | MR
[25] Baranova L. Y., Chuburin Y. P., “Quasi-levels of the two-particle discrete Schrödinger operator with a perturbed periodic potential”, J. Phys. A.: Math. Theor., 41 (2008), 435205, 11 pp. | DOI | MR | Zbl
[26] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, Mir, M., 1991, 568 pp. | MR
[27] Gataullin T. M., Karasev M. V., “On the perturbation of the quasilevels of a Schrödinger operator with complex potential”, Theor. Math. Phys., 9:2 (1971), 1117–1126 | DOI
[28] Taylor J., Scattering theory: the quantum theory of nonrelativistic collisions, Mir, M., 1975, 567 pp.
[29] Gunning R., Rossi H., Analytic functions of several complex variables, Prentice-Hall, New York, 1965 | MR | MR | Zbl
[30] Morozova L. E., Chuburin Yu. P., “On levels of the one-dimensional discrete Schrödinger operator with a decreasing small potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2004, no. 1 (29), 85–94 | MR
[31] Chuburin Yu. P., “On small perturbations of the Schrödinger operator with a periodic potential”, Theor. Math. Phys., 110:3 (1997), 351–359 | DOI | DOI | MR | Zbl
[32] Chuburin Yu. P., “On levels of a weakly perturbed periodic Schrödinger operator”, Commun. Math. Phys., 249 (2004), 497–510 | DOI | MR | Zbl
[33] Chuburin Yu. P., “Solutions of the Schrodinger equation in the case of a semiinfinite crystal”, Theor. Math. Phys., 98:1 (1994), 38–47 | MR | Zbl
[34] Vladimirov V. S., Equations of mathematical physics, Nauka, M., 1971, 512 pp. | MR | Zbl
[35] Schwartz L., “Theorie des distributions a valeurs vectoriels, I”, Ann. Inst. Fourier, 7 (1958), 1–142 | DOI | MR
[36] Schwartz L., “Theorie des distributions a valeurs vectoriels, II”, Ann. Inst. Fourier, 8 (1958), 1–210 | DOI | MR
[37] Grothendieck A., Produits tensoriels topologiques et espaces nucleaires, American Mathematical Society, 1979 | MR
[38] Schaefer H. H., Topological vector spaces, Mir, M., 1971, 360 pp. | MR