Research of the difference Schr\"odinger operator for some physical models
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 42 (2013) no. 2, pp. 3-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the discrete Schrödinger operator on a perturbed by the decreasing potential graph with vertices at the two intersecting lines is considered. We investigate spectral properties of this operator and the scattering problem for the above operator in the case of a small potential and also in the case when both a potential and velocity of a quantum particle are small. Asymptotic formulas for the probabilities of the particle propagation in all possible directions are obtained. In addition, we investigate the spectral properties of the discrete Schrödinger operator for the infinite band with zero boundary conditions. The scattering pattern is described. Simple formulas for transmission and reflection coefficients near boundary points of the subbands (this corresponds to small velocities of quantum particles) for small potentials are obtained. We consider a one-particle discrete Schrödinger operator with a periodic potential perturbed by a function which is periodic in two variables and exponentially decreases in third variable. In the paper, we also investigate the scattering problem for this operator near the extreme point of the eigenvalue of the periodic Schrödinger operator in the cell with respect to the third component of the quasimomentum, i.e. for the small perpendicular component of the angle of incidence of a particle on the potential barrier. Simple formulas of the propagation and reflection probabilities are obtained.
Keywords: difference Schrödinger operator, resonance, eigenvalue, Lippmann–Schwinger equation, scattering, propagation and reflection probabilities.
@article{IIMI_2013_42_2_a0,
     author = {T. S. Tinyukova},
     title = {Research of the difference {Schr\"odinger} operator for some physical models},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--57},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a0/}
}
TY  - JOUR
AU  - T. S. Tinyukova
TI  - Research of the difference Schr\"odinger operator for some physical models
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2013
SP  - 3
EP  - 57
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a0/
LA  - ru
ID  - IIMI_2013_42_2_a0
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%T Research of the difference Schr\"odinger operator for some physical models
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2013
%P 3-57
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a0/
%G ru
%F IIMI_2013_42_2_a0
T. S. Tinyukova. Research of the difference Schr\"odinger operator for some physical models. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 42 (2013) no. 2, pp. 3-57. http://geodesic.mathdoc.fr/item/IIMI_2013_42_2_a0/

[1] Büttiker M., Imry Y., Landauer R., Pinhas S., “Generalizet many-channel conductance formula with application to small rings”, Phys. Rev. B, 31:10 (1985), 6207–6215 | DOI

[2] Miroshnichenko A. E., Kivshar Y. S., “Engineering Fano resonances in discrete arrays”, Phys. Rev. E, 72:5 (2005), 056611, 7 pp. | DOI | MR

[3] Bellissard J., Schulz-Baldes H., “Scattering theory for lattice operators in dimension $d\geqslant 3$”, Rev. Math. Phys., 24 (2012), 1250020, 51 pp. | DOI | MR | Zbl

[4] Karachalios N. I., “The number of bound states for a discrete Schrödinger operator on $Z_N$, $N\geqslant 1$, lattices”, J. Phys. A: Math. Theor., 41:45 (2008), 455201 | DOI | MR | Zbl

[5] Ziletti A., Borgonovi F., Celardo G. L., Izrailev F. M., Karlan L., Zelevinsky V. G., “Coherent transport in multi-branch circuits”, Phys. Rev. B, 85:5 (2012), 052201, 5 pp. | DOI

[6] Ptitsyna N., Shipman S. P., A lattice model for resonance in open periodic wavequides, 2010, arXiv: 1101.0170v1 [math-ph] | MR

[7] Chuburin Yu. P., “A discrete Schrödinger operator on a graph”, Theor. Math. Phys., 165:1 (2010), 1335–1347 | DOI | DOI | Zbl

[8] Arseniev A. A., “Resonances and tunneling in the tight-binding approximation to scattering in a quantum billiard”, Theor. Math. Phys., 141:1 (2004), 1415–1426 | DOI | DOI | MR | Zbl

[9] Lakaev S. N., Khalkhuzhaev A. M., “Spectrum of the two-particle Schrödinger operator on a lattice”, Theor. Math. Phys., 155:2 (2008), 754–765 | DOI | DOI | MR | Zbl

[10] Chung F., Yau S.-T., “Discrete Green's Function”, Journal of Combinatorial Theory, Series A, 91:1–2 (2000), 191–214 | DOI | MR | Zbl

[11] Rivkind A., Krivolapov Y., Fishman S., Soffer A., “Eigenvalue repulsion estimates and some applications for the one-dimensional Anderson model”, J. Phys. A.: Math. Theor., 44:30 (2011), 305206, 19 pp. | DOI | MR | Zbl

[12] Rabinovich V. S., Roch S., “Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics”, J. Phys. A: Math. Theor., 42:38 (2009), 385207, 21 pp. | DOI | MR | Zbl

[13] Dutkay D. E., Jorgensen P. E. T., “Spectral theory for discrete Laplacians”, Complex Analysis and Operator Theory, 4:1 (2010), 1–38 | DOI | MR | Zbl

[14] Evans M. Harrell II, Manwah Lilian Wong, On the behavior at infinity of solutions to difference equations in Schrödinger form, 2011, arXiv: 1109.4691v1 [math.CA]

[15] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Mir, M., 1977, 360 pp. | MR

[16] Reed M., Simon B., Methods of modern mathematical physics, v. III, Scattering theory, Mir, M., 1982, 443 pp. | MR

[17] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Mir, M., 1982, 428 pp. | MR

[18] Tinyukova T. S., Chuburin Yu. P., “Quasi-levels of the discrete Schrödinger equation with a decreasion potential on a graph”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 3, 104–113

[19] Tinyukova T. S., “Quasi-levels of the discrete Schrödinger operator for a quantum waveguide”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 2, 88–97 | MR

[20] Tinyukova T. S., “The Lippmann-Schwinger equation for quantum wires”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 99–104 | MR

[21] Tinyukova T. S., “Scattering in the case of the discrete Schrödinger operator for intersected quantum wires”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 74–84

[22] Tinyukova T. S., “The discrete Schrödinger equation for a quantum waveguide”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 4, 80–93

[23] Tinyukova T. S., Chuburin Yu. P., “Electron scattering by a crystal layer”, Theor. Math. Phys., 176:3 (2013), 1207–1219 | DOI

[24] Berezin F. A., Schubin M. A., Schrödinger equaion, Moscow State University, M., 1983, 392 pp. | MR

[25] Baranova L. Y., Chuburin Y. P., “Quasi-levels of the two-particle discrete Schrödinger operator with a perturbed periodic potential”, J. Phys. A.: Math. Theor., 41 (2008), 435205, 11 pp. | DOI | MR | Zbl

[26] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, Mir, M., 1991, 568 pp. | MR

[27] Gataullin T. M., Karasev M. V., “On the perturbation of the quasilevels of a Schrödinger operator with complex potential”, Theor. Math. Phys., 9:2 (1971), 1117–1126 | DOI

[28] Taylor J., Scattering theory: the quantum theory of nonrelativistic collisions, Mir, M., 1975, 567 pp.

[29] Gunning R., Rossi H., Analytic functions of several complex variables, Prentice-Hall, New York, 1965 | MR | MR | Zbl

[30] Morozova L. E., Chuburin Yu. P., “On levels of the one-dimensional discrete Schrödinger operator with a decreasing small potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2004, no. 1 (29), 85–94 | MR

[31] Chuburin Yu. P., “On small perturbations of the Schrödinger operator with a periodic potential”, Theor. Math. Phys., 110:3 (1997), 351–359 | DOI | DOI | MR | Zbl

[32] Chuburin Yu. P., “On levels of a weakly perturbed periodic Schrödinger operator”, Commun. Math. Phys., 249 (2004), 497–510 | DOI | MR | Zbl

[33] Chuburin Yu. P., “Solutions of the Schrodinger equation in the case of a semiinfinite crystal”, Theor. Math. Phys., 98:1 (1994), 38–47 | MR | Zbl

[34] Vladimirov V. S., Equations of mathematical physics, Nauka, M., 1971, 512 pp. | MR | Zbl

[35] Schwartz L., “Theorie des distributions a valeurs vectoriels, I”, Ann. Inst. Fourier, 7 (1958), 1–142 | DOI | MR

[36] Schwartz L., “Theorie des distributions a valeurs vectoriels, II”, Ann. Inst. Fourier, 8 (1958), 1–210 | DOI | MR

[37] Grothendieck A., Produits tensoriels topologiques et espaces nucleaires, American Mathematical Society, 1979 | MR

[38] Schaefer H. H., Topological vector spaces, Mir, M., 1971, 360 pp. | MR