On the spectrum of a two-dimensional generalized periodic Schr\"odinger operator
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 41 (2013) no. 1, pp. 78-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Absolute continuity of the spectrum of a two-dimensional generalized periodic Schrödinger operator with continuous metric $g$ and scalar potential $V$ is proved provided that the Fourier coefficients of the functions $g^{\pm 1/2}$ satisfy the condition $\sum |N|^{1/2}|(g^{\pm 1/2})_N|+\infty $ and the scalar potential $V$ has relative bound zero with respect to the operator $-\Delta $ in the sense of quadratic forms.
Keywords: generalized Schrödinger operator, absolute continuity of the spectrum, periodic potential.
@article{IIMI_2013_41_1_a2,
     author = {L. I. Danilov},
     title = {On the spectrum of a two-dimensional generalized periodic {Schr\"odinger} operator},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {78--95},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2013_41_1_a2/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a two-dimensional generalized periodic Schr\"odinger operator
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2013
SP  - 78
EP  - 95
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2013_41_1_a2/
LA  - ru
ID  - IIMI_2013_41_1_a2
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a two-dimensional generalized periodic Schr\"odinger operator
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2013
%P 78-95
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2013_41_1_a2/
%G ru
%F IIMI_2013_41_1_a2
L. I. Danilov. On the spectrum of a two-dimensional generalized periodic Schr\"odinger operator. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 41 (2013) no. 1, pp. 78-95. http://geodesic.mathdoc.fr/item/IIMI_2013_41_1_a2/

[1] Morame A., “Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electro-magnetic potential”, J. Phys. A: Math. Gen., 31 (1998), 7593–7601 | DOI | MR | Zbl

[2] Birman M. Sh., Suslina T. A., “Absolyutnaya nepreryvnost dvumernogo periodicheskogo magnitnogo gamiltoniana s razryvnym vektornym potentsialom”, Algebra i analiz, 10:4 (1998), 1–36 | MR | Zbl

[3] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[4] Kuchment P., Levendorskiĭ S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl

[5] Birman M. Sh., Suslina T. A., Shterenberg R. G., “Absolyutnaya nepreryvnost dvumernogo operatora Shredingera s delta-potentsialom, sosredotochennym na periodicheskoi sisteme krivykh”, Algebra i analiz, 12:6 (2000), 140–177 | MR

[6] Shterenberg R. G., “Absolyutnaya nepreryvnost spektra dvumernogo magnitnogo periodicheskogo operatora Shredingera s polozhitelnym elektricheskim potentsialom”, Trudy S.-Peterb. matem. ob–va, 9, 2001, 199–233 | Zbl

[7] Shterenberg R. G., “Absolyutnaya nepreryvnost spektra dvumernogo periodicheskogo operatora Shredingera s polozhitelnym elektricheskim potentsialom”, Algebra i analiz, 13:4 (2001), 196–228 | MR

[8] Shterenberg R. G., “Absolyutnaya nepreryvnost spektra dvumernogo periodicheskogo operatora Shredingera s silno podchinennym magnitnym potentsialom”, Zap. nauch. semin. POMI, 303, 2003, 279–320 | MR

[9] Danilov L. I., “O spektre dvumernykh periodicheskikh operatorov Shredingera i Diraka”, Izvestiya Instituta matematiki i informatiki UdGU, 2002, no. 3 (26), 3–98 | MR

[10] Danilov L. I., “O spektre dvumernogo periodicheskogo operatora Shredingera”, Teor. i matem. fizika, 134:3 (2003), 447–459 | DOI | MR | Zbl

[11] Danilov L. I., “Ob otsutstvii sobstvennykh znachenii v spektre dvumernykh periodicheskikh operatorov Diraka i Shredingera”, Izvestiya Instituta matematiki i informatiki UdGU, 2004, no. 1 (29), 49–84

[12] Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 428 pp. | MR

[14] Sobolev A. V., “Absolute continuity of the periodic magnetic Schrödinger operator”, Invent. Math., 137 (1999), 85–112 | DOI | MR | Zbl

[15] Shen Z., “Absolute continuity of generalized periodic Schrödinger operators”, Contemp. Math., 277, 2001, 113–126 | DOI | MR | Zbl

[16] Shen Z., “The periodic Schrödinger operators with potentials in the Morrey class”, J. Funct. Anal., 193 (2002), 314–345 | DOI | MR | Zbl

[17] Friedlander L., “On the spectrum of a class of second order periodic elliptic differential operators”, Commun. Math. Phys., 229 (2002), 49–55 | DOI | MR | Zbl

[18] Tikhomirov M., Filonov N., “Absolyutnaya nepreryvnost «chetnogo» periodicheskogo operatora Shredingera s negladkimi potentsialami”, Algebra i analiz, 16:3 (2004), 201–210 | MR

[19] Shen Z., Zhao P., “Uniform Sobolev inequalities and absolute continuity of periodic operators”, Trans. Amer. Math. Soc., 360:4 (2008), 1741–1758 | DOI | MR | Zbl

[20] Danilov L. I., “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, J. Phys. A: Math. Theor., 42 (2009), 275204 | DOI | MR | Zbl

[21] Danilov L. I., “On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators”, J. Phys. A: Math. Theor., 43 (2010), 215201 | DOI | MR | Zbl

[22] Zhao P., Liu W., “On absolute continuity of periodic elliptic operators with singularity”, Acta Mathematica Scientia A, 30:1 (2010), 18–30 (in Chinese) | MR | Zbl

[23] Danilov L. I., “O spektre periodicheskogo operatora Shredingera s potentsialom iz prostranstva Morri”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 3, 25–47 | MR

[24] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978, 400 pp. | MR

[25] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl