On sharpness of sufficient conditions of stability for differential equations with delay
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 159-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

For stability of nonautonomous linear scalar equations with retarded argument and nonnegative coefficient, we consider conditions that have the form of an upper estimate for the integral of the coefficient over a certain interval. It is demonstrated that 2 is the least upper bound for the set of values of the integral that guarantee stability for some lenth of the interval of integration. The analogous result is obtained for a difference equation.
Keywords: differential equation with several delays, stability
Mots-clés : effective conditions, explicit conditions.
@article{IIMI_2012_39_1_a74,
     author = {K. M. Chudinov},
     title = {On sharpness of sufficient conditions of stability for differential equations with delay},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {159--160},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a74/}
}
TY  - JOUR
AU  - K. M. Chudinov
TI  - On sharpness of sufficient conditions of stability for differential equations with delay
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 159
EP  - 160
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a74/
LA  - ru
ID  - IIMI_2012_39_1_a74
ER  - 
%0 Journal Article
%A K. M. Chudinov
%T On sharpness of sufficient conditions of stability for differential equations with delay
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 159-160
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a74/
%G ru
%F IIMI_2012_39_1_a74
K. M. Chudinov. On sharpness of sufficient conditions of stability for differential equations with delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 159-160. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a74/

[1] Zverkin A.M., “K teorii lineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami”, DAN SSSR, 128:5 (1959), 882–885 | MR | Zbl

[2] Myshkis A.D., “O resheniyakh lineinykh odnorodnykh differentsialnykh uravnenii pervogo poryadka ustoichivogo tipa s zapazdyvayuschim argumentom”, Matematicheskii sbornik, 28:3 (1951), 641–658 | MR | Zbl

[3] Berezansky L., Braverman E., “On some constants for oscillation and stability of delay equations”, Proc. Amer. Math. Soc., 139:11 (2011), 4017–-4026 | DOI | MR | Zbl

[4] Yu J.S., Cheng S.S., “A stability criterion for a neutral difference equation with delay”, Appl. Math. Lett., 7:6 (1994), 75–80 | DOI | MR | Zbl

[5] Shimanov S.N., Dolgii Yu.F., “O suschestvovanii zony ustoichivosti dlya odnogo uravneniya s zapazdyvaniem”, Ustoichivost i nelineinye kolebaniya, mezhvuz. sb. nauchn. tr. Uralsk. gos. un-ta, Sverdlovsk, 1988, 11–18

[6] Malygina V.V., “Nekotorye priznaki ustoichivosti uravneniya s zapazdyvayuschim argumentom”, Differentsialnye uravneniya, 28:10 (1992), 1716–1723 | MR | Zbl