To the question about structure of attraction set in a topological space
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 147-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

For abstract attainability problems the extension constructions realized in class of ultrafilters of widely understood measurable spaces are investigated.
Keywords: attraction set, topology, ultrafilter.
@article{IIMI_2012_39_1_a70,
     author = {A. G. Chentsov},
     title = {To the question about structure of attraction set in a topological space},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {147--150},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a70/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - To the question about structure of attraction set in a topological space
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 147
EP  - 150
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a70/
LA  - ru
ID  - IIMI_2012_39_1_a70
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T To the question about structure of attraction set in a topological space
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 147-150
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a70/
%G ru
%F IIMI_2012_39_1_a70
A. G. Chentsov. To the question about structure of attraction set in a topological space. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 147-150. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a70/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[3] Chentsov A.G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestnik Udmurtskogo gosudarstvennogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 113–142

[4] Kelli Dzh.L., Obschaya topologiya, Nauka, M., 1981, 433 pp.

[5] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp.

[6] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp.

[7] Chentsov A.G., “Rasshireniya abstraktnykh zadach o dostizhimosti: nesekventsialnaya versiya”, Trudy IMM UrO RAN, 13:2 (2007), 184–217

[8] Chentsov A.G., “Rasshirenie abstraktnoi zadachi o dostizhimosti s ispolzovaniem prostranstva stounovskogo predstavleniya”, Izvestiya vuzov. Matematika, 2008, no. 3, 63–75

[9] Chentsov A.G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Trudy IMM UrO RAN, 17:4 (2011), 293–311