Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2012_39_1_a7, author = {A. I. Bulgakov and A. A. Grigorenko and E. A. Panasenko}, title = {Perturbation of {Volterra} inclusions by impulse operator}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {17--20}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a7/} }
TY - JOUR AU - A. I. Bulgakov AU - A. A. Grigorenko AU - E. A. Panasenko TI - Perturbation of Volterra inclusions by impulse operator JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2012 SP - 17 EP - 20 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a7/ LA - ru ID - IIMI_2012_39_1_a7 ER -
%0 Journal Article %A A. I. Bulgakov %A A. A. Grigorenko %A E. A. Panasenko %T Perturbation of Volterra inclusions by impulse operator %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2012 %P 17-20 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a7/ %G ru %F IIMI_2012_39_1_a7
A. I. Bulgakov; A. A. Grigorenko; E. A. Panasenko. Perturbation of Volterra inclusions by impulse operator. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 17-20. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a7/
[1] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991
[2] Bulgakov A.I., Maksimov V.P., “Funktsionalnye i funktsionalno-differentsialnye vklyucheniya s volterrovymi operatorami”, Differentsialnye uravneniya, 17:8 (1981), 1362–1374 | MR | Zbl
[3] Zavalischin C.T., Sesekin A.N., Impulsnye protsessy. Modeli i prilozheniya, Nauka, M., 1991
[4] Chentsov A.G., Elementy konechno-additivnoi teorii mery, II, UGTU–UPI, Ekaterinburg, 2010
[5] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New York, 2001 | MR