Regularized sequential Pontryagin maximum principle in the convex optimal control with pointwise state constraints
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 130-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Pontryagin maximum principle in regularized sequential form for the convex optimal control with pointwise state constraints is discussed.
Keywords: convex optimal control, minimizing sequence, maximum principle, pointwise state constraints, duality, regularization.
@article{IIMI_2012_39_1_a62,
     author = {M. I. Sumin},
     title = {Regularized sequential {Pontryagin} maximum principle in the convex optimal control with pointwise state constraints},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {130--133},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a62/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Regularized sequential Pontryagin maximum principle in the convex optimal control with pointwise state constraints
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 130
EP  - 133
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a62/
LA  - ru
ID  - IIMI_2012_39_1_a62
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Regularized sequential Pontryagin maximum principle in the convex optimal control with pointwise state constraints
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 130-133
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a62/
%G ru
%F IIMI_2012_39_1_a62
M. I. Sumin. Regularized sequential Pontryagin maximum principle in the convex optimal control with pointwise state constraints. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 130-133. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a62/

[1] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[2] Sumin M.I., Nekorrektnye zadachi i metody ikh resheniya, Materialy k lektsiyam dlya studentov starshikh kursov: Uchebnoe posobie, Izd-vo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2009, 289 pp.

[3] Sumin M.I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zhurn. vychisl. matem. i matem. fiz., 49:12 (2009), 2083–2102 | MR

[4] Sumin M.I., “Parametricheskaya dvoistvennaya regulyarizatsiya i teorema Kuna–Takkera”, Vestnik Tambovskogo universiteta. Ser.: Estestvennye i tekhnicheskie nauki, 16:1 (2011), 77-89

[5] Sumin M.I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR

[6] Sumin M.I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl