On stability of a linear autonomоus differential equation with aftereffect
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 117-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions of exponential stability (in terms of parameters of the problem under consideration) are obtained for a linear autonomоus differential equation with concentrated and distributed delays.
Keywords: differential equations with delay, exponential stability, characteristic function.
@article{IIMI_2012_39_1_a55,
     author = {T. L. Sabatulina},
     title = {On stability of a linear autonom{\cyro}us differential equation with aftereffect},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {117--118},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a55/}
}
TY  - JOUR
AU  - T. L. Sabatulina
TI  - On stability of a linear autonomоus differential equation with aftereffect
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 117
EP  - 118
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a55/
LA  - ru
ID  - IIMI_2012_39_1_a55
ER  - 
%0 Journal Article
%A T. L. Sabatulina
%T On stability of a linear autonomоus differential equation with aftereffect
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 117-118
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a55/
%G ru
%F IIMI_2012_39_1_a55
T. L. Sabatulina. On stability of a linear autonomоus differential equation with aftereffect. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 117-118. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a55/

[1] Wu S., Gan S., “Analytical and numerical stability of neutral delay integro–differential equations and neutral delay partial differential equations”, Computers and Mathematics with Applications, 2008, no. 56, 2426–2443 | MR | Zbl

[2] Huang C., Vandewalle S., “Stability of Runge–Kutta–Pouzet methods for Volterra integro-differential equations with delays”, Front. Math. China, 4:1 (2009), 63–87 | DOI | MR | Zbl

[3] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp.

[4] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 424 pp.

[5] Sabatulina T.L., “Ob avtonomnom differentsialnom uravnenii s sosredotochennym i raspredelënnym zapazdyvaniyami”, Matematicheskoe modelirovanie i kraevye zadachi, Trudy shestoi Vseross. nauch. konf. s mezhdunarodnym uchastiem, v. 3, Differentsialnye uravneniya i kraevye zadachi, SamGTU, Samara, 2009, 192–194

[6] Sabatulina T.L., Malygina V.V., “Nekotorye priznaki ustoichivosti lineinogo avtonomnogo differentsialnogo uravneniya s raspredelennym zapazdyvaniem”, Izv. vuzov. Matematika, 2007, no. 6, 55–63

[7] Andronov A.A., Maier A.T., “Prosteishie lineinye sistemy s zapazdyvaniem”, Avtomatika i telemekhanika, 7:2, 3 (1946), 95–106 | MR | Zbl