Conditions of fixed sign of Green function of two-point boundary value problem for functional differential equaiton
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 105-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions of fixed sign of Green function of two-point boundary value problem for functional differential equations of second order are obtained.
Keywords: functional-differential equation, boundary value problem, Green function.
@article{IIMI_2012_39_1_a49,
     author = {V. P. Plaksina},
     title = {Conditions of fixed sign of {Green} function of two-point boundary value problem for functional differential equaiton},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {105--106},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a49/}
}
TY  - JOUR
AU  - V. P. Plaksina
TI  - Conditions of fixed sign of Green function of two-point boundary value problem for functional differential equaiton
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 105
EP  - 106
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a49/
LA  - ru
ID  - IIMI_2012_39_1_a49
ER  - 
%0 Journal Article
%A V. P. Plaksina
%T Conditions of fixed sign of Green function of two-point boundary value problem for functional differential equaiton
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 105-106
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a49/
%G ru
%F IIMI_2012_39_1_a49
V. P. Plaksina. Conditions of fixed sign of Green function of two-point boundary value problem for functional differential equaiton. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 105-106. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a49/

[1] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, Institut kompyuternykh issledovanii, M., 2002, 384 pp.