Numerical methods for solving the evolutionary equations with delay
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 103-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The grid-based numerical algorithms for solving the hyperbolic equations with the effect of heredity are considered. The stability conditions are received and convergence orders are defined.
Keywords: equations in partial derivatives, delay, grid methods, stability
Mots-clés : convergence order.
@article{IIMI_2012_39_1_a48,
     author = {V. G. Pimenov},
     title = {Numerical methods for solving the evolutionary equations with delay},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {103--104},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a48/}
}
TY  - JOUR
AU  - V. G. Pimenov
TI  - Numerical methods for solving the evolutionary equations with delay
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 103
EP  - 104
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a48/
LA  - ru
ID  - IIMI_2012_39_1_a48
ER  - 
%0 Journal Article
%A V. G. Pimenov
%T Numerical methods for solving the evolutionary equations with delay
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 103-104
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a48/
%G ru
%F IIMI_2012_39_1_a48
V. G. Pimenov. Numerical methods for solving the evolutionary equations with delay. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 103-104. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a48/

[1] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer–Verlag, New York, 1996, 432 pp. | MR

[2] Samarskii A.A., Teoriya raznostnykh skhem, Nauka, M., 1983, 616 pp.

[3] Kim A.V., Pimenov V.G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, RKhD, M.; Izhevsk, 2004, 256 pp.

[4] Pimenov V.G., “Obschie lineinye metody chislennogo resheniya funktsionalno-differentsialnykh uravnenii”, Differentsialnye uravneniya, 37:1 (2001), 105–114 | MR | Zbl

[5] Pimenov V.G., Lozhnikov A.B., “Raznostnye skhemy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Trudy IMM UrO RAN, 17:1 (2011), 178–189 | MR

[6] Pimenov V.G., Lekomtsev A.V., “Skhodimost metoda peremennykh napravlenii chislennogo resheniya uravneniya teploprovodnosti s zapazdyvaniem”, Trudy IMM UrO RAN, 16:1 (2010), 102–118