The structure of the boundary of the controllability set of a linear subcritical system with vector-valued control
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 84-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The time-optimal problem of reaching the origin for a linear nonstationary subcritical system with vector-valued control is considered. It is proved that the boundary of the controllability set is a union of pairwise disjoint smooth manifolds of various dimensions.
Keywords: linear control system, subcritical system, controllability set.
@article{IIMI_2012_39_1_a38,
     author = {V. V. Lukyanov},
     title = {The structure of the boundary of the controllability set of a linear subcritical system with vector-valued control},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {84--85},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a38/}
}
TY  - JOUR
AU  - V. V. Lukyanov
TI  - The structure of the boundary of the controllability set of a linear subcritical system with vector-valued control
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 84
EP  - 85
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a38/
LA  - ru
ID  - IIMI_2012_39_1_a38
ER  - 
%0 Journal Article
%A V. V. Lukyanov
%T The structure of the boundary of the controllability set of a linear subcritical system with vector-valued control
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 84-85
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a38/
%G ru
%F IIMI_2012_39_1_a38
V. V. Lukyanov. The structure of the boundary of the controllability set of a linear subcritical system with vector-valued control. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 84-85. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a38/

[1] Lukyanov V.V., “Dvukhparametricheskie T-sistemy funktsii i ikh primenenie dlya issledovaniya optimalnykh po bystrodeistviyu lineinykh nestatsionarnykh upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye Nauki, 2009, no. 1, 101–130 | MR

[2] Tonkov E.L., “Neostsillyatsiya i chislo pereklyuchenii v lineinoi nestatsionarnoi sisteme, optimalnoi po bystrodeistviyu”, Differentsialnye uravneniya, 9:12 (1973), 2180–2185 | MR | Zbl

[3] Tonkov E.L., “Neostsillyatsiya i struktura mnozhestva upravlyaemosti lineinogo uravneniya”, Uspekhi matematicheskikh nauk, 38:5(233) (1983), 131

[4] Nikolaev S.F., Tonkov E.L., “Struktura mnozhestva upravlyaemosti lineinoi dokriticheskoi sistemy”, Differentsialnye uravneniya, 35:1 (1999), 107–115 | MR | Zbl