The solvability of nonlinear problems for a differential equation with retarded argument
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 78-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The statements about the existence of solutions of the initial and boundary value problems for nonlinear functional-differential equations are offered.
Keywords: differential equation, operator, delay, Cauchy’s problem, solvability, mathematical model.
@article{IIMI_2012_39_1_a35,
     author = {A. S. Larionov and I. A. Kuznetsova},
     title = {The solvability of nonlinear problems for a differential equation with retarded argument},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {78--79},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a35/}
}
TY  - JOUR
AU  - A. S. Larionov
AU  - I. A. Kuznetsova
TI  - The solvability of nonlinear problems for a differential equation with retarded argument
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 78
EP  - 79
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a35/
LA  - ru
ID  - IIMI_2012_39_1_a35
ER  - 
%0 Journal Article
%A A. S. Larionov
%A I. A. Kuznetsova
%T The solvability of nonlinear problems for a differential equation with retarded argument
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 78-79
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a35/
%G ru
%F IIMI_2012_39_1_a35
A. S. Larionov; I. A. Kuznetsova. The solvability of nonlinear problems for a differential equation with retarded argument. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 78-79. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a35/

[1] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 361 pp.

[2] Kundysheva E.S., Matematicheskoe modelirovanie v ekonomike, Uchebnoe posobie, Izdatelsko-torgovaya korporatsiya «Dashkov i Ko», M., 2006, 352 pp.