On the question of extended convexity of Green operator
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 60-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on inheritance of extended convexity by Green operator under linear perturbations.
Keywords: Green operator, extended convexity.
@article{IIMI_2012_39_1_a25,
     author = {G. G. Islamov},
     title = {On the question of extended convexity of {Green} operator},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {60--61},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a25/}
}
TY  - JOUR
AU  - G. G. Islamov
TI  - On the question of extended convexity of Green operator
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 60
EP  - 61
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a25/
LA  - ru
ID  - IIMI_2012_39_1_a25
ER  - 
%0 Journal Article
%A G. G. Islamov
%T On the question of extended convexity of Green operator
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 60-61
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a25/
%G ru
%F IIMI_2012_39_1_a25
G. G. Islamov. On the question of extended convexity of Green operator. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 60-61. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a25/

[1] Azbelev N.V., Rakhmatullina L.F., Maksimov V.P., Metody sovremennoi teorii lineinykh funktsionalno-diffrenetsialnykh uravnenii, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2000, 300 pp.

[2] Islamov G.G., “Otsenki minimalnogo ranga konechnomernykh vozmuschenii operatorov Grina”, Differentsialnye uravneniya, 25:9 (1989), 1496–1503 | MR | Zbl

[3] Islamov G.G., “O nekotorykh prilozheniyakh teorii abstraktnogo funktsionalno-differentsialnogo uravneniya. I”, Differentsialnye uravneniya, 25:11 (1989), 1872–1881 | MR | Zbl

[4] Islamov G.G., “O nekotorykh prilozheniyakh teorii abstraktnogo funktsionalno-differentsialnogo uravneniya. II”, Differentsialnye uravneniya, 26:2 (1990), 224–232 | MR | Zbl

[5] Islamov G.G., “Kriterii razreshimosti uravnenii s kraevymi neravenstvami”, Izvestiya instituta matematiki i informatiki UdGU, 1994, no. 2, 3–24

[6] Azbelev N.V., Rakhmatullina L.F., Tsalyuk Z.B., “Zametka o polozhitelnosti obratnykh operatorov”, Uchenye zapiski Udmurtskogo gospedinstituta, 1958, no. 12, 47–49

[7] Vulikh B.Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961, 408 pp.

[8] Islamov G.G., “O suschestvovanii polozhitelnykh reshenii uravnenii c zapazdyvayuschim argumentom”, Materialy tretei Vsesoyuz. mezhvuz. konf. po teorii i prilozheniyam differ. uravn. s otklonyayuschimsya argumentom, Chernovtsy, 1972, 95–97

[9] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976, 568 pp.

[10] Islamov G.G., “K voprosu ob otsenke sverkhu spektralnogo radiusa”, Vestnik Udmurtskogo universiteta, 1992, no. 1, 82–86