Linear functional differential equations in space with unindefinite metric
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 48-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectral properties of operator generating unindefinite metric of state space for linear functional differential equation. The results can find application in the theory of canonical decompositions of functional differential equations.
Keywords: linear functional differential equation, indefinite metric, canonical decomposition of functional differential equation.
@article{IIMI_2012_39_1_a19,
     author = {Yu. F. Dolgii and D. S. Bykov},
     title = {Linear functional differential equations in space with unindefinite metric},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {48--49},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a19/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - D. S. Bykov
TI  - Linear functional differential equations in space with unindefinite metric
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 48
EP  - 49
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a19/
LA  - ru
ID  - IIMI_2012_39_1_a19
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A D. S. Bykov
%T Linear functional differential equations in space with unindefinite metric
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 48-49
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a19/
%G ru
%F IIMI_2012_39_1_a19
Yu. F. Dolgii; D. S. Bykov. Linear functional differential equations in space with unindefinite metric. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 48-49. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a19/

[1] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 550 pp.

[2] Shimanov S.N., “K teorii lineinykh differentsialnykh uravnenii s posledeistviem”, Differentsialnye uravneniya, 1:1 (1965), 102–116 | MR | Zbl

[3] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp.

[4] Osipov Yu.S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | MR

[5] Bykov D.S., Dolgii Yu.F., “Kanonicheskie approksimatsii v zadache optimalnoi stabilizatsii avtonomnykh sistem s posledeistviem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17:2 (2011), 20–34

[6] Pontryagin L.S., “Ermitovy operatory v prostranstvakh s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. matem., 8 (1944), 243–280 | MR | Zbl

[7] Iokhvidov I.S., Krein M.G., “Spektralnaya teoriya operatorov v prostranstvakh s indefinitnoi metrikoi. I”, Tr. Mosk. mat. o–va, 5, 1956, 367–432 | MR | Zbl

[8] Azizov T.Ya., Iokhvidov I.S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986, 353 pp.