Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2012_39_1_a16, author = {M. I. Gusev}, title = {Dynamic programming method in construction of reachable sets for nonlinear control systems}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {42--43}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a16/} }
TY - JOUR AU - M. I. Gusev TI - Dynamic programming method in construction of reachable sets for nonlinear control systems JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2012 SP - 42 EP - 43 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a16/ LA - ru ID - IIMI_2012_39_1_a16 ER -
%0 Journal Article %A M. I. Gusev %T Dynamic programming method in construction of reachable sets for nonlinear control systems %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2012 %P 42-43 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a16/ %G ru %F IIMI_2012_39_1_a16
M. I. Gusev. Dynamic programming method in construction of reachable sets for nonlinear control systems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 42-43. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a16/
[1] Kurzhanski A. B., Valyi I., Ellipsoidal Calculus for Estimation and Control, Boston, ser. SCFA., Birkhäuser, 1997 | MR | Zbl
[2] V. A. Dykhta, “Neravenstvo Lyapunova–Krotova i dostatochnye usloviya v optimalnom upravlenii”, Optimalnoe upravlenie i dinamicheskie sistemy, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 110, VINITI, M., 2006, 76–108 | MR | Zbl
[3] Kurzhanskii A.B., “Printsip sravneniya dlya uravnenii tipa Gamiltona–Yakobi v teorii upravleniya”, Trudy instituta matematiki i mekhaniki UrO RAN, 12:1 (2006), 173–183 | Zbl
[4] Gusev M.I., “Estimates of Reachable Sets of Multidimensional Control Systems with Nonlinear Interconnections”, Proceedings of the Steklov Institute of Mathematics. Suppl. 2, 2010, S134–S146
[5] Gusev M. I., “O vneshnikh otsenkakh mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17:1 (2011), 60–69 | MR | Zbl