Dynamic programming method in construction of reachable sets for nonlinear control systems
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 42-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We offer the method of constructing of outer attainability set approximations for nonlinear control systems via solutions of Hamilton–Jacobi differential inequalities.
Keywords: control system, reachable set, comparison principle.
@article{IIMI_2012_39_1_a16,
     author = {M. I. Gusev},
     title = {Dynamic programming method in construction of reachable sets for nonlinear control systems},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {42--43},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a16/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - Dynamic programming method in construction of reachable sets for nonlinear control systems
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 42
EP  - 43
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a16/
LA  - ru
ID  - IIMI_2012_39_1_a16
ER  - 
%0 Journal Article
%A M. I. Gusev
%T Dynamic programming method in construction of reachable sets for nonlinear control systems
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 42-43
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a16/
%G ru
%F IIMI_2012_39_1_a16
M. I. Gusev. Dynamic programming method in construction of reachable sets for nonlinear control systems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 42-43. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a16/

[1] Kurzhanski A. B., Valyi I., Ellipsoidal Calculus for Estimation and Control, Boston, ser. SCFA., Birkhäuser, 1997 | MR | Zbl

[2] V. A. Dykhta, “Neravenstvo Lyapunova–Krotova i dostatochnye usloviya v optimalnom upravlenii”, Optimalnoe upravlenie i dinamicheskie sistemy, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 110, VINITI, M., 2006, 76–108 | MR | Zbl

[3] Kurzhanskii A.B., “Printsip sravneniya dlya uravnenii tipa Gamiltona–Yakobi v teorii upravleniya”, Trudy instituta matematiki i mekhaniki UrO RAN, 12:1 (2006), 173–183 | Zbl

[4] Gusev M.I., “Estimates of Reachable Sets of Multidimensional Control Systems with Nonlinear Interconnections”, Proceedings of the Steklov Institute of Mathematics. Suppl. 2, 2010, S134–S146

[5] Gusev M. I., “O vneshnikh otsenkakh mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17:1 (2011), 60–69 | MR | Zbl