A generalized solution of boundary value problem for an elliptic equation on a graph
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 28-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an analogue of lemma Du-Bua-Reymond, we introduce subspaces $W_2^1(\Gamma)$ and the concept of generalized solutions of the corresponding boundary value problems.
Keywords: graph-star, generalized derivative, generalized solutions.
Mots-clés : lemma Du-Bua-Reymond
@article{IIMI_2012_39_1_a11,
     author = {A. S. Volkova},
     title = {A generalized solution of boundary value problem for an elliptic equation on a graph},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {28--29},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a11/}
}
TY  - JOUR
AU  - A. S. Volkova
TI  - A generalized solution of boundary value problem for an elliptic equation on a graph
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 28
EP  - 29
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a11/
LA  - ru
ID  - IIMI_2012_39_1_a11
ER  - 
%0 Journal Article
%A A. S. Volkova
%T A generalized solution of boundary value problem for an elliptic equation on a graph
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 28-29
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a11/
%G ru
%F IIMI_2012_39_1_a11
A. S. Volkova. A generalized solution of boundary value problem for an elliptic equation on a graph. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 28-29. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a11/

[1] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Fizmatlit, M., 1973, 408 pp.

[2] Smirnov V.I., Kurs vysshei matematiki, v. 4, No 1, Fizmatlit, M., 1981, 550 pp.

[3] Shilov G.E., Matematicheskii analiz. Spetsialnyi kurs, Fizmatlit, M., 1961, 435 pp.