On the capture of two evaders in a simple pursuit-evasion problem
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 26-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the capture two evaders in a simple pursuit-evasion problem are obtained.
Keywords: differential game, phase restrictions, piece-program strategy, counterstrategy.
@article{IIMI_2012_39_1_a10,
     author = {M. N. Vinogradova},
     title = {On the capture of two evaders in a simple pursuit-evasion problem},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {26--27},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a10/}
}
TY  - JOUR
AU  - M. N. Vinogradova
TI  - On the capture of two evaders in a simple pursuit-evasion problem
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2012
SP  - 26
EP  - 27
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a10/
LA  - ru
ID  - IIMI_2012_39_1_a10
ER  - 
%0 Journal Article
%A M. N. Vinogradova
%T On the capture of two evaders in a simple pursuit-evasion problem
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2012
%P 26-27
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a10/
%G ru
%F IIMI_2012_39_1_a10
M. N. Vinogradova. On the capture of two evaders in a simple pursuit-evasion problem. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 39 (2012) no. 1, pp. 26-27. http://geodesic.mathdoc.fr/item/IIMI_2012_39_1_a10/

[1] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Udmurtskii universitet, Izhevsk, 2009, 266 pp.

[2] Bannikov A.S., “Ob odnoi zadache prostogo presledovaniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 3–11

[3] Petrov N.N., “K nestatsionarnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Matematicheskaya teoriya igr i ee prilozheniya, 2:4 (2010), 74–83

[4] Chikrii A.A., Konfliktno-upravlyaemye protsessy, Nauk. dumka, Kiev, 1992, 380 pp.

[5] Bannikov A.S., Petrov N.N., “K nestatsionarnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16:1 (2010), 40–51 | MR