Bringing the control system motion in the neighborhood of given point of the reachable set
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 37 (2006) no. 3, pp. 139-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IIMI_2006_37_3_a64,
     author = {L. V. Spesivtsev},
     title = {Bringing the control system motion in the neighborhood of given point of the reachable set},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {139--140},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a64/}
}
TY  - JOUR
AU  - L. V. Spesivtsev
TI  - Bringing the control system motion in the neighborhood of given point of the reachable set
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 139
EP  - 140
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a64/
LA  - ru
ID  - IIMI_2006_37_3_a64
ER  - 
%0 Journal Article
%A L. V. Spesivtsev
%T Bringing the control system motion in the neighborhood of given point of the reachable set
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 139-140
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a64/
%G ru
%F IIMI_2006_37_3_a64
L. V. Spesivtsev. Bringing the control system motion in the neighborhood of given point of the reachable set. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 37 (2006) no. 3, pp. 139-140. http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a64/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[2] Kurzhanskii A. B., Filippova T. F., “Differentsialnye vklyucheniya s fazovymi ogranicheniyami. Metod vozmuschenii”, Optimalnoe upravlenie i differents. ur-niya, Tr. MI RAN, 211, M., 1995, 304–315 | MR

[3] Filippova T. F., Zadachi o vyzhivaemosti dlya differentsialnykh vklyuchenii, Dis. ...dokt. fiz.-matem. nauk, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 1992, 266 pp.

[4] Nikolskii M. S., “Ob approksimatsii mnozhestva dostizhimosti dlya differentsialnogo vklyucheniya”, Vestn. MGU. Ser. Vychisl. matem. i kibernetika, 4 (1987), 31–34

[5] Neznakhin A. A., Ushakov V. N., “Setochnyi metod priblizhennogo postroeniya yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, Raspredelennye sistemy: optimizatsiya i prilozheniya v ekonomike i naukakh ob okruzhayuschei srede, Sbornik dokladov k Mezhdunarodnoi konferentsii, Nauchnoe izdanie, UrO RAN, Ekaterinburg, 2000, 156–158

[6] Neznakhin A. A., Postroenie yader vyzhivaemosti v nelineinykh zadachakh upravleniya, Dis. ...kand. fiz.-matem. nauk, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 2001, 132 pp. | Zbl

[7] Aubin J.-P., Viability Theory, Birkhauser, Boston–Basel–Berlin, 1991 | MR | Zbl

[8] Saint-Pierre P., Quincampoix M., “An algoritm for viability Kernels in Holderian case: approximation by discrete dynamical systems”, J. Math. System Estim. Control, 5:1 (1995), 115–118 | MR | Zbl

[9] Ushakov V. N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya–ukloneniya”, Izv. AN SSSR. Tekhn. kibernetika, 4 (1980), 32–45