Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2006_37_3_a64, author = {L. V. Spesivtsev}, title = {Bringing the control system motion in the neighborhood of given point of the reachable set}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {139--140}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a64/} }
TY - JOUR AU - L. V. Spesivtsev TI - Bringing the control system motion in the neighborhood of given point of the reachable set JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2006 SP - 139 EP - 140 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a64/ LA - ru ID - IIMI_2006_37_3_a64 ER -
%0 Journal Article %A L. V. Spesivtsev %T Bringing the control system motion in the neighborhood of given point of the reachable set %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2006 %P 139-140 %V 37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a64/ %G ru %F IIMI_2006_37_3_a64
L. V. Spesivtsev. Bringing the control system motion in the neighborhood of given point of the reachable set. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 37 (2006) no. 3, pp. 139-140. http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a64/
[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[2] Kurzhanskii A. B., Filippova T. F., “Differentsialnye vklyucheniya s fazovymi ogranicheniyami. Metod vozmuschenii”, Optimalnoe upravlenie i differents. ur-niya, Tr. MI RAN, 211, M., 1995, 304–315 | MR
[3] Filippova T. F., Zadachi o vyzhivaemosti dlya differentsialnykh vklyuchenii, Dis. ...dokt. fiz.-matem. nauk, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 1992, 266 pp.
[4] Nikolskii M. S., “Ob approksimatsii mnozhestva dostizhimosti dlya differentsialnogo vklyucheniya”, Vestn. MGU. Ser. Vychisl. matem. i kibernetika, 4 (1987), 31–34
[5] Neznakhin A. A., Ushakov V. N., “Setochnyi metod priblizhennogo postroeniya yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, Raspredelennye sistemy: optimizatsiya i prilozheniya v ekonomike i naukakh ob okruzhayuschei srede, Sbornik dokladov k Mezhdunarodnoi konferentsii, Nauchnoe izdanie, UrO RAN, Ekaterinburg, 2000, 156–158
[6] Neznakhin A. A., Postroenie yader vyzhivaemosti v nelineinykh zadachakh upravleniya, Dis. ...kand. fiz.-matem. nauk, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 2001, 132 pp. | Zbl
[7] Aubin J.-P., Viability Theory, Birkhauser, Boston–Basel–Berlin, 1991 | MR | Zbl
[8] Saint-Pierre P., Quincampoix M., “An algoritm for viability Kernels in Holderian case: approximation by discrete dynamical systems”, J. Math. System Estim. Control, 5:1 (1995), 115–118 | MR | Zbl
[9] Ushakov V. N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya–ukloneniya”, Izv. AN SSSR. Tekhn. kibernetika, 4 (1980), 32–45