On solutions of the Goursat-Darboux problem with boundary and distributed controls
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 37 (2006) no. 3, pp. 125-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IIMI_2006_37_3_a57,
     author = {N. I. Pogodaev},
     title = {On solutions of the {Goursat-Darboux} problem with boundary and distributed controls},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {125--126},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a57/}
}
TY  - JOUR
AU  - N. I. Pogodaev
TI  - On solutions of the Goursat-Darboux problem with boundary and distributed controls
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 125
EP  - 126
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a57/
LA  - ru
ID  - IIMI_2006_37_3_a57
ER  - 
%0 Journal Article
%A N. I. Pogodaev
%T On solutions of the Goursat-Darboux problem with boundary and distributed controls
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 125-126
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a57/
%G ru
%F IIMI_2006_37_3_a57
N. I. Pogodaev. On solutions of the Goursat-Darboux problem with boundary and distributed controls. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 37 (2006) no. 3, pp. 125-126. http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a57/

[1] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Analysis, 4:2 (1996), 173–203 | DOI | MR | Zbl

[2] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: relaxation theorems”, Set-Valued Analysis, 4:3 (1996), 237–269 | DOI | MR | Zbl