The use of $2^n$-dimensional cubic trees for implementing the pixel method of computation of reachable sets in $n$-dimensional space and visualization of results
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 37 (2006) no. 3, pp. 105-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IIMI_2006_37_3_a47,
     author = {D. K. Mikhalev},
     title = {The use of $2^n$-dimensional cubic trees for implementing the pixel method of computation of reachable sets in $n$-dimensional space and visualization of results},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {105--106},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a47/}
}
TY  - JOUR
AU  - D. K. Mikhalev
TI  - The use of $2^n$-dimensional cubic trees for implementing the pixel method of computation of reachable sets in $n$-dimensional space and visualization of results
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 105
EP  - 106
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a47/
LA  - ru
ID  - IIMI_2006_37_3_a47
ER  - 
%0 Journal Article
%A D. K. Mikhalev
%T The use of $2^n$-dimensional cubic trees for implementing the pixel method of computation of reachable sets in $n$-dimensional space and visualization of results
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 105-106
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a47/
%G ru
%F IIMI_2006_37_3_a47
D. K. Mikhalev. The use of $2^n$-dimensional cubic trees for implementing the pixel method of computation of reachable sets in $n$-dimensional space and visualization of results. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 37 (2006) no. 3, pp. 105-106. http://geodesic.mathdoc.fr/item/IIMI_2006_37_3_a47/

[1] Guseinov Kh. G., Moiseev A. N., Ushakov V. N., “Ob approksimatsii oblastei dostizhimosti upravlyaemykh sistem”, Prikl. mat. i mekh., 62:2 (1998), 179–187 | MR

[2] Wilhelms J., Gelder A. V., “Octrees for faster isosurface generation”, ACM Transactions on Graphics, 11:3, July (1992), 201–228 | DOI

[3] Kyu-Young Whang, Ju-Won Song, Ji-Woong Chang, Ji-Yun Kim, Wan-Sup Cho, Chong-Mok Park II-Yeol Song, “Octtree-R: An adaptive octree for efficient Ray Tracing”, IEEE Transactions on Visualization and Computer Graphics 12, 1:4 (1995), 343–349 | DOI