Systems with advance and delay: numerical solving
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 185-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study linear system of differential equation with advance and delay. For this system we formulate the boundary value problem and investigate the questions of existence and uniqueness for solution. Also we develop numerical methods for solving this problem.
@article{IIMI_2006_36_2_a42,
     author = {D. A. Korotkii},
     title = {Systems with advance and delay: numerical solving},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {185--188},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a42/}
}
TY  - JOUR
AU  - D. A. Korotkii
TI  - Systems with advance and delay: numerical solving
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 185
EP  - 188
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a42/
LA  - ru
ID  - IIMI_2006_36_2_a42
ER  - 
%0 Journal Article
%A D. A. Korotkii
%T Systems with advance and delay: numerical solving
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 185-188
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a42/
%G ru
%F IIMI_2006_36_2_a42
D. A. Korotkii. Systems with advance and delay: numerical solving. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 185-188. http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a42/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl

[2] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971, 296 pp. | MR

[3] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[4] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, NITs «Regulyarnaya i khaoticheskaya dinamika», Moskva–Izhevsk, 2004, 256 pp.

[5] Kamenskii G. A., Skubachevskii A. L., Lineinye kraevye zadachi dlya differentsialno-raznostnykh uravnenii, Izd-vo MAI, M., 1992, 192 pp. | MR

[6] Baotong C., “Functional differential equations mixed type in Banach spaces”, Rend. Sem. Univ. Padova, 94 (1995), 47–54 | MR | Zbl

[7] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shkola, M., 2005, 840 pp.