Convergence of the Newton method with approximation of inverse matrices by the Schulz--Seidel process
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 139-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

For solving systems of non-linear finite-dimensional equations, a modification of the Newton method is proposed which uses consecutive approximation of inverse matrices by the Schulz–Seidel process. Conditions for a quadratic convergence of this method are specified.
@article{IIMI_2006_36_2_a31,
     author = {V. M. Verzhbitskiy and N. A. Makurochkina},
     title = {Convergence of the {Newton} method with approximation of inverse matrices by the {Schulz--Seidel} process},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {139--142},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a31/}
}
TY  - JOUR
AU  - V. M. Verzhbitskiy
AU  - N. A. Makurochkina
TI  - Convergence of the Newton method with approximation of inverse matrices by the Schulz--Seidel process
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 139
EP  - 142
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a31/
LA  - ru
ID  - IIMI_2006_36_2_a31
ER  - 
%0 Journal Article
%A V. M. Verzhbitskiy
%A N. A. Makurochkina
%T Convergence of the Newton method with approximation of inverse matrices by the Schulz--Seidel process
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 139-142
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a31/
%G ru
%F IIMI_2006_36_2_a31
V. M. Verzhbitskiy; N. A. Makurochkina. Convergence of the Newton method with approximation of inverse matrices by the Schulz--Seidel process. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 139-142. http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a31/

[1] Verzhbitskii V. M., Chislennye metody (lineinaya algebra i nelineinye uravneniya), 2-e izd., ONIKS 21 vek, M., 2005, 432 pp.

[2] Verzhbitskii V. M., “Ob iteratsionnom protsesse Shultsa–Zeidelya”, Algoritmicheskii analiz neustoichivykh zadach, Izd-vo Ural. un-ta, Ekaterinburg, 2004, 108–109

[3] Verzhbitskii V. M., “Vybor parametrov v teoremakh skhodimosti odnogo approksimatsionnogo analoga metoda Nyutona”, Zhurn. vychislit. matematiki i mat. fiziki, 15:6 (1975), 1594–1597 | MR