Iterative methods with successive approximation of inverse operators
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 129-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

An overview of a large family of iterative methods of solving operator equations with smooth operators. The common characteristic of these methods is the possibility of using approximate inversion of Frechet derivatives.
@article{IIMI_2006_36_2_a30,
     author = {V. M. Verzhbitskiy},
     title = {Iterative methods with successive approximation of inverse operators},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a30/}
}
TY  - JOUR
AU  - V. M. Verzhbitskiy
TI  - Iterative methods with successive approximation of inverse operators
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 129
EP  - 138
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a30/
LA  - ru
ID  - IIMI_2006_36_2_a30
ER  - 
%0 Journal Article
%A V. M. Verzhbitskiy
%T Iterative methods with successive approximation of inverse operators
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 129-138
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a30/
%G ru
%F IIMI_2006_36_2_a30
V. M. Verzhbitskiy. Iterative methods with successive approximation of inverse operators. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 129-138. http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a30/

[1] Bartish M. Ya., “O nekotorykh iteratsionnykh metodakh resheniya funktsionalnykh uravnenii”, Sibirskii matem. zhurn., 10:3 (1969), 488–493

[2] Vaarmann O., “O nekotorykh iteratsionnykh metodakh s posledovatelnoi approksimatsiei obratnogo operatora”, Izv. AN ESSR, 17:4 (1968), 379–390 | Zbl

[3] Verzhbitskii V. M., “Vybor parametrov v teoremakh skhodimosti odnogo approksimatsionnogo analoga metoda Nyutona”, Zhurn. vychislit. matematiki i mat. fiziki, 15:6 (1975), 1594–1597 | MR

[4] Verzhbitskii V. M., “O svobodnykh ot obrascheniya vlozhennykh iteratsiyakh Nyutona”, Kraevye zadachi, Izd-vo Perm. ped. in-ta, Perm, 1979, 83–84

[5] Verzhbitskii V. M., “O skhodimosti posledovatelnostei elementov banakhovykh prostranstv k nulyam nelineinykh operatorov”, Vestn. PGTU. Funkts.-diff. uravneniya, no. spets. vypusk, Perm, 2002, 98–107

[6] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shkola, M., 2002, 840 pp.; 2-е изд., 2005

[7] Verzhbitskii V. M., Chislennye metody (lineinaya algebra i nelineinye uravneniya), 2-e izd., ONIKS 21 vek, M., 2005, 432 pp.

[8] Verzhbitskii V. M., Petrov M. Yu., “O polyusnom metode Nyutona v konechnomernykh i v banakhovykh prostranstvakh”, Zhurn. vychislit. matematiki i mat. fiziki, 44:6 (2004), 979–985 | MR | Zbl

[9] Verzhbitskii V. M., Tsalyuk Z. B., “Ob odnom priblizhennom metode nakhozhdeniya rezolventy”, Zhurn. vychislit. matematiki i mat. fiziki, 10:1 (1970), 214–215

[10] Verzhbitskii V. M., Tsalyuk Z. B., “Ob odnom analoge usilennogo metoda Nyutona–Kantorovicha”, Dokl. AN SSSR, 203:3 (1972), 515–516

[11] Verzhbitskii V. M., Tsalyuk Z. B., “Ob usilennom metode Nyutona–Kantorovicha s approksimatsiei obratnogo operatora”, Zhurn. vychislit. matematiki i mat. fiziki, 12:1 (1972), 222–227

[12] Vertgeim B. A., “Ob usloviyakh primeneniya metoda Nyutona”, Dokl. AN SSSR, 110:5 (1956), 719–722 | MR

[13] Kantorovich L. V., “O metode Nyutona dlya funktsionalnykh uravnenii”, Dokl. AN SSSR, 59:7 (1948), 1237–1240

[14] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[15] Mysovskikh I. P., “O skhodimosti metoda L. V. Kantorovicha resheniya funktsionalnykh uravnenii i ego primeneniya”, Dokl. AN SSSR, 70:4 (1950), 565–568

[16] Mertvetsova M. A., “Ob odnom metode priblizhennogo resheniya nelineinykh funktsionalnykh uravnenii”, Izv. Kazansk. fil. AN SSSR, Ser. fiz.-mat. nauk, 1955, no. 8, 153–154

[17] Nechepurenko M. I., “O metode Chebysheva dlya funktsionalnykh uravnenii”, Uspekhi mat. nauk, 9:2 (1954), 163–170 | MR

[18] Ogneva V. A., Chernyshenko V. M., “Ob odnom iteratsionnom protsesse s posledovatelnoi approksimatsiei obratnogo operatora”, Matem. zametki, 28:5 (1980), 785–790 | MR | Zbl

[19] Ulm S. Yu., “Ob iteratsionnykh metodakh s posledovatelnoi approksimatsiei obratnogo operatora”, Izv. AN ESSR, ser. fiz.-mat. nauk, 16:4 (1967), 403–411 | MR

[20] Altman M., “An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space”, Pacific J. Math., 10:4 (1960), 1107–1113 | MR | Zbl

[21] Bodewig E., “On types of convergence and on the behavior of approximations in the neighborhood of a multiple root of an equation”, Quarterly J. of Appl., 7:3 (1949), 325–333 | MR | Zbl

[22] Chen Wei-xiong, “On the convergence of an approximating Newton method”, Tszisuan siusyue, Math. numer. sin., 6:4 (1984), 388–395 | MR | Zbl

[23] Hotelling H., “Some new methods in matrix calculation”, Amer. Math. Stabist., 14 (1943), 1–34 | MR | Zbl

[24] Kleinmichel H., “Stetige Analoga und Iterationsverfahren fur nichtlineare Gleichungen in Banachraumen”, Math. Nachr., 37:5–6 (1968), 313–343 | DOI | MR | Zbl

[25] Mozer J., Stable and Random Motions in Dinamical Systems, Princenton University Press, 1973 | MR

[26] Petryshyn W. V., “On the inversion of matrices and linear operators”, Proc. Amer. Math. Soc., 6:5 (1965), 893–901 | DOI | MR

[27] Schröder E., “Uber unendlich viele Algorithmen zur Auflosung der Gleichungen”, Math. Ann., 2 (1870), 317–365 | DOI | MR

[28] Schulz G., “Iterative Berechnung der reziproken Matrix”, ZAMM, 13 (1933), 57–59 | DOI | Zbl