Some problems of an escape from a group of pursuers
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 105-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved the possibility of an escape of the meeting in the second and third order differential game of a group of pursuers and an evader. It is proved the possibility of an escape of the «soft» meeting a inertion evader of group inertion objects.
@article{IIMI_2006_36_2_a24,
     author = {L. S. Chirkova},
     title = {Some problems of an escape from a group of pursuers},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {105--108},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a24/}
}
TY  - JOUR
AU  - L. S. Chirkova
TI  - Some problems of an escape from a group of pursuers
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 105
EP  - 108
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a24/
LA  - ru
ID  - IIMI_2006_36_2_a24
ER  - 
%0 Journal Article
%A L. S. Chirkova
%T Some problems of an escape from a group of pursuers
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 105-108
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a24/
%G ru
%F IIMI_2006_36_2_a24
L. S. Chirkova. Some problems of an escape from a group of pursuers. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 105-108. http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a24/

[1] Prokopovich P. V., Chikrii A. A., “Odna differentsialnaya igra ubeganiya”, Doklad AN USSR. Ser. A, 1989, 71–74 | MR | Zbl

[2] Ivanov R. P., “K voprosu o myagkoi poimke v differentsialnykh igrakh so mnogimi dogonyayuschimi i odnim uklonyayuschimsya igrokom”, Tr. matem. in-ta AN SSSR, 185, 1988, 74–84 | MR

[3] Petrov N. N., ““Myagkaya” poimka v primere L. S. Pontryagina so mnogimi uchastnikami”, Prikladnaya matematika i mekhanika, 67:5 (2003), 759–770 | MR | Zbl

[4] Petrov N. N., Teoriya igr, Izd-vo Udm. un-ta, Izhevsk, 1997, 197 pp. | MR | Zbl

[5] Pshenichnyi B. N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146