On levels of the one-dimensional Schr\"odinger operator on the boundary of the essential spectrum
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-dimensional Schrödinger operator $H_n$ with the non-local perturbed step potential. We prove that there exists the unique level (i.e. eigenvalue or resonance of the operator $H_n$) in the neighborhood of the boundary of the essential spectrum of the operator $H_n$.
@article{IIMI_2006_36_2_a20,
     author = {N. I. Pletnikova},
     title = {On levels of the one-dimensional {Schr\"odinger} operator on the boundary of the essential spectrum},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a20/}
}
TY  - JOUR
AU  - N. I. Pletnikova
TI  - On levels of the one-dimensional Schr\"odinger operator on the boundary of the essential spectrum
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 91
EP  - 94
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a20/
LA  - ru
ID  - IIMI_2006_36_2_a20
ER  - 
%0 Journal Article
%A N. I. Pletnikova
%T On levels of the one-dimensional Schr\"odinger operator on the boundary of the essential spectrum
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 91-94
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a20/
%G ru
%F IIMI_2006_36_2_a20
N. I. Pletnikova. On levels of the one-dimensional Schr\"odinger operator on the boundary of the essential spectrum. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 91-94. http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a20/

[1] Chuburin Yu. P., “Ob operatore Shredingera s malym potentsialom tipa vozmuschennoi stupenki”, Teor. i mat. fizika, 120:2 (1999), 277–290 | MR | Zbl