Approximate methods of solving Cauchy problem for functional-differential equations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 79-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We offer a method of approximate solution of abstract functional-differential equation in arbitrary Banah functional spaces. The method is based on substitution an operator of volterra on a close operator, which possesses a property of $\tau$-kvasivolterrovosty. If approximate operator will be chosen properly then from this method we can get new and known methods of solution of concrete functional-differential equations.
@article{IIMI_2006_36_2_a17,
     author = {M. G. Mishina},
     title = {Approximate methods of solving {Cauchy}  problem for functional-differential equations},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {79--82},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a17/}
}
TY  - JOUR
AU  - M. G. Mishina
TI  - Approximate methods of solving Cauchy  problem for functional-differential equations
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 79
EP  - 82
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a17/
LA  - ru
ID  - IIMI_2006_36_2_a17
ER  - 
%0 Journal Article
%A M. G. Mishina
%T Approximate methods of solving Cauchy  problem for functional-differential equations
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 79-82
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a17/
%G ru
%F IIMI_2006_36_2_a17
M. G. Mishina. Approximate methods of solving Cauchy  problem for functional-differential equations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 79-82. http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a17/

[1] Zhukovskii E. S., “Nelineinoe uravnenie Volterra v banakhovom funktsionalnom prostranstve”, Izv. vuzov. Matematika, 2005, no. 10 (521), 17–28 | MR

[2] Maksimov V. P., “O predelnom perekhode v kraevykh zadachakh dlya funktsionalno-differentsialnykh uravnenii”, Differentsialnye uravneniya, 17:11 (1981), 1984–1994 | MR | Zbl