To the question of existence of the generalized solution for the perturbed inclusion
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 9-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The «perturbed» differential inclusion with a multimap non necessarily convex valued with respect to the switching is under discussion. For an inclusion as such the concept of the generalized solution is represented. The conditions for existence of the generalized solution with lower semicontinuous multimap are derived.
@article{IIMI_2006_36_2_a1,
     author = {A. I. Bulgakov and A. I. Korobko},
     title = {To the question of existence of the generalized solution for the perturbed inclusion},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {9--12},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a1/}
}
TY  - JOUR
AU  - A. I. Bulgakov
AU  - A. I. Korobko
TI  - To the question of existence of the generalized solution for the perturbed inclusion
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 9
EP  - 12
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a1/
LA  - ru
ID  - IIMI_2006_36_2_a1
ER  - 
%0 Journal Article
%A A. I. Bulgakov
%A A. I. Korobko
%T To the question of existence of the generalized solution for the perturbed inclusion
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 9-12
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a1/
%G ru
%F IIMI_2006_36_2_a1
A. I. Bulgakov; A. I. Korobko. To the question of existence of the generalized solution for the perturbed inclusion. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 36 (2006) no. 2, pp. 9-12. http://geodesic.mathdoc.fr/item/IIMI_2006_36_2_a1/

[1] Bulgakov A. I., “K voprosu suschestvovaniya nepreryvnykh vetvei u mnogoznachnykh otobrazhenii s nevypuklymi obrazami v prostranstve summiruemykh funktsii”, Matem. sb., 136:2 (1988), 292–300 | MR | Zbl

[2] Bulgakov A. I., Belyaeva O. P., Machina A. N., “Funktsionalno–differentsialnoe vklyuchenie s mnogoznachnym otobrazheniem, ne obladayuschim svoistvom vypuklosti po pereklyucheniyu znachenii”, Vestn. Udm. un-ta, 2005, no. 1, 3–20 | MR