Levels of the Schr\"odinger operator with a perturbed non-local potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 98-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the one-dimensional Schrödinger operator with a potential that is a sum of a local potential and a two-rank operator. We prove that this Schrödinger operator has the unique level in the neighborhood of zero. The asimptotic behaviour of this level is investigated.
@article{IIMI_2006_35_1_a6,
     author = {M. S. Smetanina},
     title = {Levels of the {Schr\"odinger} operator with a perturbed non-local potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {98--104},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a6/}
}
TY  - JOUR
AU  - M. S. Smetanina
TI  - Levels of the Schr\"odinger operator with a perturbed non-local potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 98
EP  - 104
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a6/
LA  - ru
ID  - IIMI_2006_35_1_a6
ER  - 
%0 Journal Article
%A M. S. Smetanina
%T Levels of the Schr\"odinger operator with a perturbed non-local potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 98-104
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a6/
%G ru
%F IIMI_2006_35_1_a6
M. S. Smetanina. Levels of the Schr\"odinger operator with a perturbed non-local potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 98-104. http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a6/

[1] Kheine V., Koen M., Ueir D., Teoriya psevdopotentsiala, Mir, M., 1973, 560 pp.

[2] Smetanina M. S., “Ob uravnenii Shredingera s nelokalnym potentsialom”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2002, no. 3 (26), 99–114

[3] Smetanina M. S., “Asimptotika urovnei odnomernogo operatora Shredingera s nelokalnym potentsialom”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2005, no. 1 (31), 99–106

[4] Albeverio S., Gestezi F., Kheeg-Kron R., Kholden Kh., Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991, 568 pp. | MR