Scattering problem for the Schr\"odinger equation with a step-like potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 89-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the scattering problem for the Schrödinger operator with a non-local perturbed step potential. The uniqueness of the inverse problem is proved.
@article{IIMI_2006_35_1_a5,
     author = {N. I. Pletnikova},
     title = {Scattering problem for the {Schr\"odinger} equation with a step-like potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a5/}
}
TY  - JOUR
AU  - N. I. Pletnikova
TI  - Scattering problem for the Schr\"odinger equation with a step-like potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 89
EP  - 97
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a5/
LA  - ru
ID  - IIMI_2006_35_1_a5
ER  - 
%0 Journal Article
%A N. I. Pletnikova
%T Scattering problem for the Schr\"odinger equation with a step-like potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 89-97
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a5/
%G ru
%F IIMI_2006_35_1_a5
N. I. Pletnikova. Scattering problem for the Schr\"odinger equation with a step-like potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 89-97. http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a5/

[1] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningr. un-ta, L., 1975, 240 pp.

[2] Chuburin Yu. P., “Ob operatore Shredingera s malym potentsialom tipa vozmuschennoi stupenki”, Teor. i mat. fizika, 120:2 (1999), 277–290 | MR | Zbl

[3] Faddeev L. D., Yakubovskii O. A., Lektsii po kvantovoi mekhanike dlya studentov-matematikov, Izd-vo RKhD, M.–Izhevsk, 2001, 256 pp.

[4] Landau L. D., Lifshits E. M., Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1963, 704 pp. | MR

[5] Smetanina M. S., Chuburin Yu. P., “Ob uravnenii Shredingera dlya kristallicheskoi plenki s nelokalnym potentsialom”, Vestn. Udm. un-ta. Ser. Matematika, 2003, no. 1, 19–30

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya rasseyaniya, Mir, M., 1982, 448 pp. | MR

[7] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1967, 436 pp. | MR

[8] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Izd-vo Shtiintsa, Kishinev, 1973, 428 pp. | MR