Scattering problem for the one-dimensional discrete Schr\"odinger operator with a decreasing potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 83-88

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-dimensional discrete Schrödinger operator $H_0+V$ acting on the space $l^2(\mathbb{Z}),$ where $V$ is a decreasing potential. The theorem of existence and uniqueness of the corresponding Lippmann–Schwinger equation is proved. We study the asymptotics behaviour of solutions of this equation.
@article{IIMI_2006_35_1_a4,
     author = {L. E. Morozova},
     title = {Scattering problem for the one-dimensional discrete {Schr\"odinger} operator with a decreasing potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {83--88},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a4/}
}
TY  - JOUR
AU  - L. E. Morozova
TI  - Scattering problem for the one-dimensional discrete Schr\"odinger operator with a decreasing potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 83
EP  - 88
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a4/
LA  - ru
ID  - IIMI_2006_35_1_a4
ER  - 
%0 Journal Article
%A L. E. Morozova
%T Scattering problem for the one-dimensional discrete Schr\"odinger operator with a decreasing potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 83-88
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a4/
%G ru
%F IIMI_2006_35_1_a4
L. E. Morozova. Scattering problem for the one-dimensional discrete Schr\"odinger operator with a decreasing potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 83-88. http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a4/