Scattering problem for the one-dimensional discrete Schr\"odinger operator with a decreasing potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 83-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-dimensional discrete Schrödinger operator $H_0+V$ acting on the space $l^2(\mathbb{Z}),$ where $V$ is a decreasing potential. The theorem of existence and uniqueness of the corresponding Lippmann–Schwinger equation is proved. We study the asymptotics behaviour of solutions of this equation.
@article{IIMI_2006_35_1_a4,
     author = {L. E. Morozova},
     title = {Scattering problem for the one-dimensional discrete {Schr\"odinger} operator with a decreasing potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {83--88},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a4/}
}
TY  - JOUR
AU  - L. E. Morozova
TI  - Scattering problem for the one-dimensional discrete Schr\"odinger operator with a decreasing potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 83
EP  - 88
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a4/
LA  - ru
ID  - IIMI_2006_35_1_a4
ER  - 
%0 Journal Article
%A L. E. Morozova
%T Scattering problem for the one-dimensional discrete Schr\"odinger operator with a decreasing potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 83-88
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a4/
%G ru
%F IIMI_2006_35_1_a4
L. E. Morozova. Scattering problem for the one-dimensional discrete Schr\"odinger operator with a decreasing potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 83-88. http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a4/

[1] Tsikon Kh., Freze R., Kirsh V., Saimon B., Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990, 408 pp. | MR

[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 360 pp. | MR

[3] Wolfram T., Callaway J., “Spin-wave impurity states in ferromagnets”, Physical Review, 130:6 (1963), 2207–2217 | DOI | Zbl

[4] Morozova L. E., Chuburin Yu. P., “Ob urovnyakh odnomernogo diskretnogo operatora Shredingera s ubyvayuschim potentsialom”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2004, no. 1 (29), 85–94 | MR

[5] Arsenev A. A., “Rezonansy i tunnelirovanie pri rasseyanii na kvantovom bilyarde v priblizhenii silnoi svyazi”, Teor. i matem. fizika, 141:1 (2004), 100–112 | MR

[6] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983, 392 pp. | MR

[7] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2002, 488 pp.