On absolute continuity of the spectrum of three-dimensional periodic Dirac operator
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 49-76

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the absolute continuity of the spectrum of periodic Dirac operator $\sum\limits_{j=1}^3\hat \alpha _j\bigl( -i\, \frac {\partial}{\partial x_j}-A_j\bigr) +\hat {\mathcal V}^{(0)}+\hat {\mathcal V}^{(1)}\, ,\ x\in {\mathbb{R}}^3$, with period lattice $\Lambda \subset {\mathbb{R}}^3$ if $A\in L^{\infty}({\mathbb{R}}^3; {\mathbb{R}}^3)$, $\| \, |A|\, \| _{L^{\infty}({\mathbb{R}}^3)}\max\limits_{\gamma \in \Lambda \backslash \{ 0\} }\pi |\gamma |^{-1}$, the Hermitian matrix-valued functions $\hat {\mathcal V}^{(s)}_{}$ belong to Zigmund class $L^3\ln ^{2+\delta}_{}L(K)$ for some $\delta >0$, where $K$ is the unit cell of the lattice $\Lambda$, and $\hat {\mathcal V}^{(s)}\hat \alpha _j=(-1)^s\hat \alpha _j\hat {\mathcal V}^{(s)}$, $s=0,1$, for all anticommuting Hermitian matrices $\hat \alpha _j^{}\, $, $\hat \alpha _j^2=\hat I$, j=1, 2, 3.
@article{IIMI_2006_35_1_a2,
     author = {L. I. Danilov},
     title = {On absolute continuity of the spectrum of three-dimensional periodic {Dirac} operator},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {49--76},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a2/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On absolute continuity of the spectrum of three-dimensional periodic Dirac operator
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 49
EP  - 76
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a2/
LA  - ru
ID  - IIMI_2006_35_1_a2
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On absolute continuity of the spectrum of three-dimensional periodic Dirac operator
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 49-76
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a2/
%G ru
%F IIMI_2006_35_1_a2
L. I. Danilov. On absolute continuity of the spectrum of three-dimensional periodic Dirac operator. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 49-76. http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a2/