On absolute continuity of the spectrum of three-dimensional periodic Dirac operator
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 49-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the absolute continuity of the spectrum of periodic Dirac operator $\sum\limits_{j=1}^3\hat \alpha _j\bigl( -i\, \frac {\partial}{\partial x_j}-A_j\bigr) +\hat {\mathcal V}^{(0)}+\hat {\mathcal V}^{(1)}\, ,\ x\in {\mathbb{R}}^3$, with period lattice $\Lambda \subset {\mathbb{R}}^3$ if $A\in L^{\infty}({\mathbb{R}}^3; {\mathbb{R}}^3)$, $\| \, |A|\, \| _{L^{\infty}({\mathbb{R}}^3)}\max\limits_{\gamma \in \Lambda \backslash \{ 0\} }\pi |\gamma |^{-1}$, the Hermitian matrix-valued functions $\hat {\mathcal V}^{(s)}_{}$ belong to Zigmund class $L^3\ln ^{2+\delta}_{}L(K)$ for some $\delta >0$, where $K$ is the unit cell of the lattice $\Lambda$, and $\hat {\mathcal V}^{(s)}\hat \alpha _j=(-1)^s\hat \alpha _j\hat {\mathcal V}^{(s)}$, $s=0,1$, for all anticommuting Hermitian matrices $\hat \alpha _j^{}\, $, $\hat \alpha _j^2=\hat I$, j=1, 2, 3.
@article{IIMI_2006_35_1_a2,
     author = {L. I. Danilov},
     title = {On absolute continuity of the spectrum of three-dimensional periodic {Dirac} operator},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {49--76},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a2/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On absolute continuity of the spectrum of three-dimensional periodic Dirac operator
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 49
EP  - 76
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a2/
LA  - ru
ID  - IIMI_2006_35_1_a2
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On absolute continuity of the spectrum of three-dimensional periodic Dirac operator
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 49-76
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a2/
%G ru
%F IIMI_2006_35_1_a2
L. I. Danilov. On absolute continuity of the spectrum of three-dimensional periodic Dirac operator. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 49-76. http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a2/

[1] Danilov L. I., Spektr operatora Diraka s periodicheskim potentsialom, VI, Dep. v VINITI 31.12.96, No 3855–V96, VINITI, M., 1996, 45 pp.

[2] Gruber M. J., Measures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schrödinger operators, 1999, arXiv: math-ph/9908026 | MR

[3] Filonov N., Sobolev A. V., “Absence of the singular continuous component in the spectrum of analytic direct integrals”, Zap. nauch. seminarov POMI, 318, 2004, 298–307 | MR | Zbl

[4] Kuchment P., Levendorskii S., “On the spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2001), 537–569 | DOI | MR

[5] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[6] Sobolev A. V., “Absolute continuity of the periodic magnetic Schrödinger operator”, Invent. Math., 137 (1999), 85–112 | DOI | MR | Zbl

[7] Morame A., “Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electro-magnetic potential”, J. Phys. A: Math. Gen., 31 (1998), 7593–7601 | DOI | MR | Zbl

[8] Shterenberg R. G., “Absolyutnaya nepreryvnost spektra dvumernogo magnitnogo periodicheskogo operatora Shredingera s polozhitelnym elektricheskim potentsialom”, Trudy S.-Peterb. matem. ob-va, 9, 2001, 199–233 | Zbl

[9] Suslina T. A., Shterenberg R. G., “Absolyutnaya nepreryvnost operatora Shredingera s potentsialom, sosredotochennym na periodicheskoi sisteme giperpoverkhnostei”, Algebra i analiz, 13:5 (2001), 197–240 | MR | Zbl

[10] Shterenberg R. G., “Absolyutnaya nepreryvnost spektra dvumernogo periodicheskogo operatora Shredingera s silno podchinennym magnitnym potentsialom”, Zap. nauch. seminarov POMI, 303, 2003, 279–320 | MR

[11] Shen Z., “On absolute continuity of the periodic Schrödinger operators”, Int. Math. Res. Notices, 2001, no. 1, 1–31 | DOI | MR | Zbl

[12] Shen Z., “Absolute continuity of periodic Schrödinger operators with potentials in the Kato class”, Illinois J. Math., 45:3 (2001), 873–893 | MR | Zbl

[13] Shen Z., “The periodic Schrödinger operators with potentials in the Morrey class”, J. Funct. Anal., 193:2 (2002), 314–345 | DOI | MR | Zbl

[14] Friedlander L., “On the spectrum of a class of second order periodic elliptic differential operators”, Commun. Math. Phys., 229 (2002), 49–55 | DOI | MR | Zbl

[15] Danilov L. I., “Ob absolyutnoi nepreryvnosti spektra periodicheskogo operatora Shredingera”, Matem. zametki, 73:1 (2003), 49–62 | DOI | MR | Zbl

[16] Danilov L. I., “O spektre dvumernogo periodicheskogo operatora Shredingera”, Teor. i matem. fizika, 134:3 (2003), 447–459 | MR | Zbl

[17] Danilov L. I., “Ob otsutstvii sobstvennykh znachenii v spektre dvumernykh periodicheskikh operatorov Diraka i Shredingera”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2004, no. 1 (29), 49–84

[18] Tikhomirov M., Filonov N., “Absolyutnaya nepreryvnost «chetnogo» periodicheskogo operatora Shredingera s negladkimi koeffitsientami”, Algebra i analiz, 16:3 (2004), 201–210 | MR | Zbl

[19] Danilov L. I., O spektre operatora Diraka s periodicheskim potentsialom, Preprint FTI UrO AN SSSR, Sverdlovsk, 1987, 31 pp.

[20] Danilov L. I., Odno svoistvo tselochislennoi reshetki v $\mathbb{R}^3$ i spektr operatora Diraka s periodicheskim potentsialom, Preprint FTI UrO AN SSSR, Sverdlovsk, 1988, 33 pp.

[21] Danilov L. I., “O spektre operatora Diraka v $\mathbb{R}^n$ s periodicheskim potentsialom”, Teor. i matem. fizika, 85:1 (1990), 41–53 | MR | Zbl

[22] Danilov L. I., Spektr operatora Diraka s periodicheskim potentsialom, I, Dep. v VINITI 12.12.91. No 4588–V91, VINITI, M., 1991, 35 pp.

[23] Danilov L. I., Spektr operatora Diraka s periodicheskim potentsialom, III, Dep. v VINITI 10.07.92. No 2252–V92, VINITI, M., 1992, 33 pp.

[24] Danilov L. I., “Otsenki rezolventy i spektr operatora Diraka s periodicheskim potentsialom”, Teor. i matem. fizika, 103:1 (1995), 3–22 | MR | Zbl

[25] Danilov L. I., “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Diraka”, Differents. uravneniya, 36:2 (2000), 233–240 | MR | Zbl

[26] Danilov L. I., “O spektre dvumernogo periodicheskogo operatora Diraka”, Teor. i matem. fizika, 118:1 (1999), 3–14 | MR | Zbl

[27] Birman M. Sh., Suslina T. A., “The periodic Dirac operator is absolutely continuous”, Integr. Equat. and Operator Theory, 34 (1999), 377–395 | DOI | MR | Zbl

[28] Lapin I. S., “Absolyutnaya nepreryvnost spektra dvumernykh periodicheskikh magnitnykh operatorov Shredingera i Diraka s potentsialami iz klassov Zigmunda”, Probl. matem. analiza, 22, SPbGU, SPb., 2001, 74–105

[29] Danilov L. I., “Ob otsutstvii sobstvennykh znachenii v spektre obobschennogo dvumernogo periodicheskogo operatora Diraka”, Algebra i analiz, 17:3 (2005), 47–80 | MR

[30] Danilov L. I., Ob absolyutnoi nepreryvnosti spektra periodicheskikh operatorov Shredingera i Diraka, II, Dep. v VINITI 09.04.01. No 916–V2001, VINITI, M., 2001, 60 pp.

[31] Danilov L. I., “O spektre dvumernykh periodicheskikh operatorov Shredingera i Diraka”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2002, no. 3 (26), 3–98 | MR

[32] Danilov L. I., “O spektre periodicheskogo operatora Diraka”, Teor. i matem. fizika, 124:1 (2000), 3–17 | MR | Zbl

[33] Danilov L. I., Ob absolyutnoi nepreryvnosti spektra periodicheskikh operatorov Shredingera i Diraka, I, Dep. v VINITI 15.06.00. No 1683–V00, VINITI, M., 2000, 76 pp.

[34] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravnenii s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:6 (1950), 1117–1120

[35] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR

[36] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser Verlag, Basel, 1993 | MR | Zbl

[37] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[38] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978, 357 pp.