Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2006_35_1_a1, author = {L. I. Danilov}, title = {On uniform approximation of {Weyl} and {Besicovitch} almost periodic functions}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {33--48}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a1/} }
TY - JOUR AU - L. I. Danilov TI - On uniform approximation of Weyl and Besicovitch almost periodic functions JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2006 SP - 33 EP - 48 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a1/ LA - ru ID - IIMI_2006_35_1_a1 ER -
%0 Journal Article %A L. I. Danilov %T On uniform approximation of Weyl and Besicovitch almost periodic functions %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2006 %P 33-48 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a1/ %G ru %F IIMI_2006_35_1_a1
L. I. Danilov. On uniform approximation of Weyl and Besicovitch almost periodic functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a1/
[1] Danilov L. I., O pochti periodicheskikh po Veilyu secheniyakh mnogoznachnykh otobrazhenii, Dep. v VINITI 09.06.04, No 981–V2004, FTI UrO RAN, Izhevsk, 2004, 104 pp.
[2] Danilov L. I., “On Weyl almost periodic selections of multivalued maps”, J. Math. Anal. Appl., 316:1 (2006), 110–127 | DOI | MR | Zbl
[3] Danilov L. I., On Besicovitch almost periodic selections of multivalued maps, 2005, arXiv: math.CA/0503293
[4] Andres J., “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential Inclusions and Optimal Control, LN in Nonlin. Anal., 2, eds. J. Andres, L. Górniewicz, P. Nistri, 1998, 35–50
[5] Andres J., Bersani A. M., Leśniak K., “On some almost-periodicity problems in various metrics”, Acta Appl. Math., 65:1–3 (2001), 35–57 | DOI | MR | Zbl
[6] Dolbilov A. M., Shneiberg I. Ya., “Pochti periodicheskie mnogoznachnye otobrazheniya i ikh secheniya”, Sib. matem. zhurn., 32:2 (1991), 172–175 | MR | Zbl
[7] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl
[8] Danilov L. I., “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izvestiya otdela matematiki i informatiki UdGU. Izhevsk, 1993, no. 1, 16–78 | Zbl
[9] Danilov L. I., “O mnogoznachnykh pochti periodicheskikh otobrazheniyakh, zavisyaschikh ot parametra”, Vestn. Udm. un-ta, 1994, no. 2, 29–44 | Zbl
[10] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Matem. sbornik, 188:10 (1997), 3–24 | MR | Zbl
[11] Danilov L. I., “O pochti periodicheskikh mnogoznachnykh otobrazheniyakh”, Matem. zametki, 68:1 (2000), 82–90 | DOI | MR | Zbl
[12] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii”, Matem. zametki, 61:1 (1997), 57–68 | DOI | MR | Zbl
[13] Danilov L. I., “O pochti periodicheskikh meroznachnykh funktsiyakh”, Matem. sbornik, 191:12 (2000), 27–50 | MR | Zbl
[14] Danilov L. I., O superpozitsii pochti periodicheskikh mnogoznachnykh otobrazhenii i funktsii, Dep. v VINITI 31.01.95, No 262–V95, FTI UrO RAN, Izhevsk, 1995, 31 pp.
[15] Danilov L. I., “O ravnomernoi approksimatsii pochti periodicheskikh po Stepanovu funktsii”, Izv. vuzov. Matematika, 1998, no. 5, 10–18 | MR
[16] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953
[17] Marcinkiewicz J., “Une remarque sur les espaces de M. Besicowitch”, C. R. Acad. Sc. Paris, 208 (1939), 157–159 | Zbl
[18] Danilov L. I., On equi-Weyl almost periodic selections of multivalued maps, 2003, arXiv: math.CA/0310010 | MR
[19] Danilov L. I., Ravnomernaya approksimatsiya pochti periodicheskikh po Stepanovu funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii, Dep. v VINITI 21.02.03, No 354–V2003, FTI UrO RAN, Izhevsk, 2003, 70 pp.
[20] Danilov L. I., “Ravnomernaya approksimatsiya pochti periodicheskikh po Stepanovu funktsii”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2004, no. 1 (29), 33–48