On uniform approximation of Weyl and Besicovitch almost periodic functions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new proof of the theorem on uniform approximation of Weyl almost periodic functions by elementary Weyl almost periodic functions. Analogous result is also obtained for Besicovitch almost periodic functions.
@article{IIMI_2006_35_1_a1,
     author = {L. I. Danilov},
     title = {On uniform approximation of {Weyl} and {Besicovitch} almost periodic functions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a1/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On uniform approximation of Weyl and Besicovitch almost periodic functions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 33
EP  - 48
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a1/
LA  - ru
ID  - IIMI_2006_35_1_a1
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On uniform approximation of Weyl and Besicovitch almost periodic functions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 33-48
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a1/
%G ru
%F IIMI_2006_35_1_a1
L. I. Danilov. On uniform approximation of Weyl and Besicovitch almost periodic functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a1/

[1] Danilov L. I., O pochti periodicheskikh po Veilyu secheniyakh mnogoznachnykh otobrazhenii, Dep. v VINITI 09.06.04, No 981–V2004, FTI UrO RAN, Izhevsk, 2004, 104 pp.

[2] Danilov L. I., “On Weyl almost periodic selections of multivalued maps”, J. Math. Anal. Appl., 316:1 (2006), 110–127 | DOI | MR | Zbl

[3] Danilov L. I., On Besicovitch almost periodic selections of multivalued maps, 2005, arXiv: math.CA/0503293

[4] Andres J., “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential Inclusions and Optimal Control, LN in Nonlin. Anal., 2, eds. J. Andres, L. Górniewicz, P. Nistri, 1998, 35–50

[5] Andres J., Bersani A. M., Leśniak K., “On some almost-periodicity problems in various metrics”, Acta Appl. Math., 65:1–3 (2001), 35–57 | DOI | MR | Zbl

[6] Dolbilov A. M., Shneiberg I. Ya., “Pochti periodicheskie mnogoznachnye otobrazheniya i ikh secheniya”, Sib. matem. zhurn., 32:2 (1991), 172–175 | MR | Zbl

[7] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl

[8] Danilov L. I., “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izvestiya otdela matematiki i informatiki UdGU. Izhevsk, 1993, no. 1, 16–78 | Zbl

[9] Danilov L. I., “O mnogoznachnykh pochti periodicheskikh otobrazheniyakh, zavisyaschikh ot parametra”, Vestn. Udm. un-ta, 1994, no. 2, 29–44 | Zbl

[10] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Matem. sbornik, 188:10 (1997), 3–24 | MR | Zbl

[11] Danilov L. I., “O pochti periodicheskikh mnogoznachnykh otobrazheniyakh”, Matem. zametki, 68:1 (2000), 82–90 | DOI | MR | Zbl

[12] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii”, Matem. zametki, 61:1 (1997), 57–68 | DOI | MR | Zbl

[13] Danilov L. I., “O pochti periodicheskikh meroznachnykh funktsiyakh”, Matem. sbornik, 191:12 (2000), 27–50 | MR | Zbl

[14] Danilov L. I., O superpozitsii pochti periodicheskikh mnogoznachnykh otobrazhenii i funktsii, Dep. v VINITI 31.01.95, No 262–V95, FTI UrO RAN, Izhevsk, 1995, 31 pp.

[15] Danilov L. I., “O ravnomernoi approksimatsii pochti periodicheskikh po Stepanovu funktsii”, Izv. vuzov. Matematika, 1998, no. 5, 10–18 | MR

[16] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953

[17] Marcinkiewicz J., “Une remarque sur les espaces de M. Besicowitch”, C. R. Acad. Sc. Paris, 208 (1939), 157–159 | Zbl

[18] Danilov L. I., On equi-Weyl almost periodic selections of multivalued maps, 2003, arXiv: math.CA/0310010 | MR

[19] Danilov L. I., Ravnomernaya approksimatsiya pochti periodicheskikh po Stepanovu funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii, Dep. v VINITI 21.02.03, No 354–V2003, FTI UrO RAN, Izhevsk, 2003, 70 pp.

[20] Danilov L. I., “Ravnomernaya approksimatsiya pochti periodicheskikh po Stepanovu funktsii”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2004, no. 1 (29), 33–48