On strong and weak operators on the space of regulated functions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 3-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Concepts of strong and weak operators on the space of regulated functions are defined. Solvability of equations $(\dot x,\varphi)\equiv(Fx,\varphi)$ with special strong and weak operators $F$ are proved. Explicit forms of continuous and regulated solutions are proved.
@article{IIMI_2006_35_1_a0,
     author = {V. I. Rodionov},
     title = {On strong and weak operators on the space of regulated functions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--32},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a0/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - On strong and weak operators on the space of regulated functions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 3
EP  - 32
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a0/
LA  - ru
ID  - IIMI_2006_35_1_a0
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T On strong and weak operators on the space of regulated functions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 3-32
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a0/
%G ru
%F IIMI_2006_35_1_a0
V. I. Rodionov. On strong and weak operators on the space of regulated functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 35 (2006) no. 1, pp. 3-32. http://geodesic.mathdoc.fr/item/IIMI_2006_35_1_a0/

[1] Hönig Ch. S., Volterra–Stieltjes integral equations, Mathematics Studies, 16, North-Holland, Amsterdam, 1975, 152 pp. | MR

[2] Hildebrandt T. H., Introduction to the theory of integration, Academic Press, N.Y.–L., 1963, 385 pp. | MR

[3] Derr V. Ya., “Ob odnom obobschenii integrala Rimana–Stiltesa”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 1997, no. 3 (11), 3–29

[4] Rodionov V. I., “Prisoedinennyi integral Rimana–Stiltesa v algebre preryvistykh funktsii”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2005, no. 1 (31), 3–78

[5] Rodionov V. I., “O prostranstve regulyarno differentsiruemykh funktsii”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2004, no. 1 (29), 3–32

[6] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl

[7] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyuter. issled., M., 2002, 384 pp.

[8] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 228 pp. | MR

[9] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1969, 656 pp.

[10] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[11] Peshkov D. S., Rodionov V. I., “O lineinykh impulsnykh sistemakh”, Vestn. Udm. un-ta. Ser. Matematika, 2006, no. 1, 95–106