Conflict controlled processes by interaction of controlled object groups
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 34 (2005) no. 4, pp. 81-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Result's review pursuit problem and evasion problem in differential games with many players was made.
@article{IIMI_2005_34_4_a5,
     author = {N. N. Petrov},
     title = {Conflict controlled processes  by interaction of controlled object groups},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {81--102},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2005_34_4_a5/}
}
TY  - JOUR
AU  - N. N. Petrov
TI  - Conflict controlled processes  by interaction of controlled object groups
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2005
SP  - 81
EP  - 102
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2005_34_4_a5/
LA  - ru
ID  - IIMI_2005_34_4_a5
ER  - 
%0 Journal Article
%A N. N. Petrov
%T Conflict controlled processes  by interaction of controlled object groups
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2005
%P 81-102
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2005_34_4_a5/
%G ru
%F IIMI_2005_34_4_a5
N. N. Petrov. Conflict controlled processes  by interaction of controlled object groups. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 34 (2005) no. 4, pp. 81-102. http://geodesic.mathdoc.fr/item/IIMI_2005_34_4_a5/

[1] Chikrii A. A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992

[2] Chikrii A. A., Prokopovich P. V., “O zadache ubeganiya pri vzaimodeistvii grupp lineinykh ob'ektov”, Kibernetika, 1989, no. 5, 59–63 ; 78 | MR | Zbl

[3] Chikrii A. A., Prokopovich P. V., “Lineinaya zadacha ubeganiya pri vzaimodeistvii grupp upravlyaemykh ob'ektov”, Prikladnaya matematika i mekhanika, 58:4 (1994), 12–21 | MR

[4] Petrov N. N., Petrov N. Nikandr., “O differentsialnoi igre «kazaki-razboiniki»”, Differentsialnye uravneniya, 19:8 (1983), 1366–1374 | MR | Zbl

[5] Petrov N. N., “Odna otsenka v differentsialnoi igre so mnogimi ubegayuschimi”, Vestn. Leningr. un-ta, 1985, no. 22, 107–109 | MR | Zbl

[6] Petrov N. N., Prostoe presledovanie pri nalichii fazovykh ogranichenii, Dep. v VINITI 20. 03. 84. No 1684, 14 pp.

[7] Petrov N. N., Prokopenko V. A., “Ob odnoi zadache presledovaniya gruppy ubegayuschikh”, Differentsialnye uravneniya, 23:4 (1987), 724–726 | MR

[8] Petrov N. N., “Ob odnoi zadache presledovaniya gruppy ubegayuschikh”, Avtomatika i telemekhanika, 1996, no. 6, 48–54 | MR | Zbl

[9] Petrov N. N., Teoriya igr, Izd-vo Udm. un-ta, Izhevsk, 1997 | MR | Zbl

[10] Blagodatskikh A. I., “O nekotorykh zadachakh gruppovogo presledovaniya”, Differentsialnye uravneniya s chastnymi proizvodnymi i rodstvennye problemy analiza i informatiki, Tr. Mezhdunar. konf. (Tashkent, 2004), v. 2, 33–36

[11] Blagodatskikh A. I., Konfliktno upravlyaemye protsessy pri vzaimodeistvii grupp upravlyaemykh ob'ektov, Avtoref. dis. ...kand. fiz.-mat. nauk, Izhevsk, 2005, 13 pp.

[12] Satimov N., Mamatov M. Sh., “O zadachakh presledovaniya i ukloneniya ot vstrechi v differentsialnykh igrakh mezhdu gruppami presledovatelei i ubegayuschikh”, DAN Uzb. SSR, 1983, no. 4, 3–6 | MR | Zbl

[13] Satimov N., Mamatov M. Sh., “Ob odnom klasse lineinykh differentsialnykh i diskretnykh igr mezhdu gruppami presledovatelei i ubegayuschikh”, Differentsialnye uravneniya, 14:7 (1978), 1208–1214 | MR | Zbl

[14] Petrov N. N., “Prostoe presledovanie zhestkosoedinennykh ubegayuschikh”, Avtomatika i telemekhanika, 1997, no. 12, 89–95 | MR

[15] Vagin D. A., Petrov N. N., “Zadacha presledovaniya gruppy zhestko skoordinirovannykh ubegayuschikh”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2001, no. 5, 75–79 | MR | Zbl

[16] Vagin D. A., Petrov N. N., “Ob odnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Prikladnaya matematika i mekhanika, 66:2 (2002), 234–241 | MR

[17] Vagin D. A., Petrov N. N., “Presledovanie gruppy ubegayuschikh v primere Pontryagina”, Prikladnaya matematika i mekhanika, 68:4 (2004), 623–628 | MR | Zbl

[18] Petrov N. N., “«Myagkaya» poimka v primere Pontryagina so mnogimi uchastnikami”, Prikladnaya matematika i mekhanika, 67:5 (2003), 759–770 | MR | Zbl

[19] Grigorenko N. L., “Presledovanie neskolkimi upravlyaemymi ob'ektami dvukh ubegayuschikh”, DAN SSSR, 282:5 (1985), 1051–1054 | MR | Zbl

[20] Grigorenko N. L., “Zadacha presledovaniya neskolkimi ob'ektami”, Tr. matem. in-ta AN SSSR, 166, 1984, 61–75 | MR | Zbl

[21] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo Mosk. un-ta, M., 1990

[22] Vagin D. A., Petrov N. N., “Presledovanie dvukh ubegayuschikh”, Problemy mekhaniki i upravleniya, Izd-vo Perm. un-ta, Perm, 2005 (to appear)