On levels of the one-dimensional Schr\"odinger operator on the boundary of the essential spectrum
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 107-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-dimensional Schrödinger operator $H$ with the non-local perturbed step potential. We prove that there exists the unique level (i.e. eigenvalue or resonance of the operator $H$) in the neighborhood of the boundary of the essential spectrum of the operator $H$. We investigate the asymptotic behaviour of this level.
@article{IIMI_2005_31_1_a3,
     author = {N. I. Pletnikova},
     title = {On levels of the one-dimensional {Schr\"odinger} operator on the boundary of the essential spectrum},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {107--112},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a3/}
}
TY  - JOUR
AU  - N. I. Pletnikova
TI  - On levels of the one-dimensional Schr\"odinger operator on the boundary of the essential spectrum
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2005
SP  - 107
EP  - 112
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a3/
LA  - ru
ID  - IIMI_2005_31_1_a3
ER  - 
%0 Journal Article
%A N. I. Pletnikova
%T On levels of the one-dimensional Schr\"odinger operator on the boundary of the essential spectrum
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2005
%P 107-112
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a3/
%G ru
%F IIMI_2005_31_1_a3
N. I. Pletnikova. On levels of the one-dimensional Schr\"odinger operator on the boundary of the essential spectrum. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 107-112. http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a3/

[1] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningr. un-ta, L., 1975, 240 pp.

[2] Pletnikova N. I., “Ob odnomernom uravnenii Shredingera s nelokalnym potentsialom tipa vozmuschennoi stupenki”, Izvestiya Instituta matematiki i informatiki UdGU. Izhevsk, 2004, no. 3(29), 95–108

[3] Chuburin Yu. P., “Ob operatore Shredingera s malym potentsialom tipa vozmuschennoi stupenki”, Teor. i matem. fizika, 120:2 (1999), 277–290 | MR | Zbl

[4] Chuburin Yu. P., “O popadanii sobstvennogo znacheniya (rezonansa) operatora Shredingera na granitsu zony”, Teor. i matem. fizika, 126:2 (2001), 196–205 | MR | Zbl