The asymptotic behaviour of levels of the one-dimensional Schr\"odinger operator with the non-local potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 99-106

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the one-dimensional Schrödinger operator with the potential that is the sum of $n$ separable potentials. There are $n$ levels (eigenvalues or resonances) of this Schrödinger operator. We study the asymptotic behaviour of levels in the case $n=2$.
@article{IIMI_2005_31_1_a2,
     author = {M. S. Smetanina},
     title = {The asymptotic behaviour of levels of the one-dimensional {Schr\"odinger} operator with the non-local potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {99--106},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a2/}
}
TY  - JOUR
AU  - M. S. Smetanina
TI  - The asymptotic behaviour of levels of the one-dimensional Schr\"odinger operator with the non-local potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2005
SP  - 99
EP  - 106
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a2/
LA  - ru
ID  - IIMI_2005_31_1_a2
ER  - 
%0 Journal Article
%A M. S. Smetanina
%T The asymptotic behaviour of levels of the one-dimensional Schr\"odinger operator with the non-local potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2005
%P 99-106
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a2/
%G ru
%F IIMI_2005_31_1_a2
M. S. Smetanina. The asymptotic behaviour of levels of the one-dimensional Schr\"odinger operator with the non-local potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 99-106. http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a2/