On Weyl almost periodic measure-valued functions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 79-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider measure-valued functions ${\mathbb{R}}\ni t\to \mu [.;t]$ taking values in the metric space $({\mathcal M}_0(U),\rho _w)$ of probability Borel measures defined on the $\sigma$-algebra of Borel subsets of a complete seperable metric space $U$. The metric space $({\mathcal M}_0(U), \rho _w)$ is endowed with the metric $\rho _w$ equivalent to the Lévy–Prokhorov metric. It is proved that the measure-valued function ${\mathbb{R}}\ni t\to \mu\, [\,.\,;t]\in ({\mathcal M}_0(U),\rho _w)$ is Weyl almost periodic if and only if the functions $\int\limits_U{\mathcal F}(x)\, \mu\, [\,dx;\,.\,]$ are Weyl almost periodic (of order 1) for all bounded continuous functions ${\mathcal F}:U\to {\mathbb{R}}$.
@article{IIMI_2005_31_1_a1,
     author = {L. I. Danilov},
     title = {On {Weyl} almost periodic measure-valued functions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {79--98},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a1/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On Weyl almost periodic measure-valued functions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2005
SP  - 79
EP  - 98
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a1/
LA  - ru
ID  - IIMI_2005_31_1_a1
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On Weyl almost periodic measure-valued functions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2005
%P 79-98
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a1/
%G ru
%F IIMI_2005_31_1_a1
L. I. Danilov. On Weyl almost periodic measure-valued functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 79-98. http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a1/

[1] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985 | MR

[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[4] Pinni E., Obyknovennye differentsialno-raznostnye uravneniya, Izd-vo inostr. lit., M., 1961 | MR

[5] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl

[6] Ivanov A. G., “Ob optimalnom upravlenii pochti periodicheskimi dvizheniyami pri nalichii ogranichenii na srednie tipa ravenstv i neravenstv. I; II; III”, Differents. uravneniya, 33:2 (1997), 167–176 ; 3, 316–323 ; 4, 478–485 | Zbl | Zbl | Zbl

[7] Ivanov A. G., Meroznachnye pochti periodicheskie funktsii, Preprint, Sverdlovsk, 1990

[8] Ivanov A. G., Meroznachnye pochti periodicheskie funktsii, II, Dep. v VINITI 24.04.91, No 1721-B91, UdGU, Izhevsk, 1991

[9] Danilov L. I., “O meroznachnykh pochti periodicheskikh funktsiyakh”, Vestnik Udmurtskogo universiteta. Matematika. Izhevsk, 1993, no. 1, 51–58 | Zbl

[10] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Matem. sbornik, 188:10 (1997), 3–24 | MR | Zbl

[11] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii”, Matem. zametki, 61:1 (1997), 57–68 | DOI | MR | Zbl

[12] Danilov L. I., “O pochti periodicheskikh meroznachnykh funktsiyakh”, Matem. sbornik, 191:12 (2000), 27–50 | MR | Zbl

[13] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953

[14] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR | Zbl

[15] Danilov L. I., O pochti periodicheskikh po Veilyu secheniyakh mnogoznachnykh otobrazhenii, Dep. v VINITI 09.06.2004, No 981-B2004, FTI UrO RAN, Izhevsk, 2004, 104 pp.

[16] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[17] Andres J., “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential Inclusions and Optimal Control, LN in Nonlin. Anal., 2, eds. J. Andres, L. Górniewicz, P. Nistri), 1998, 35–50

[18] Andres J., Bersani A. M., Lésniak K., “On some almost-periodicity problems in various metrics”, Acta Appl. Math., 65:1–3 (2001), 35–57 | DOI | MR | Zbl

[19] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[20] Danilov L. I., On equi-Weyl almost periodic selections of multivalued maps, 2003, arXiv: math.CA/0310010 | MR