On Weyl almost periodic measure-valued functions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 79-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider measure-valued functions ${\mathbb{R}}\ni t\to \mu [.;t]$ taking values in the metric space $({\mathcal M}_0(U),\rho _w)$ of probability Borel measures defined on the $\sigma$-algebra of Borel subsets of a complete seperable metric space $U$. The metric space $({\mathcal M}_0(U), \rho _w)$ is endowed with the metric $\rho _w$ equivalent to the Lévy–Prokhorov metric. It is proved that the measure-valued function ${\mathbb{R}}\ni t\to \mu\, [\,.\,;t]\in ({\mathcal M}_0(U),\rho _w)$ is Weyl almost periodic if and only if the functions $\int\limits_U{\mathcal F}(x)\, \mu\, [\,dx;\,.\,]$ are Weyl almost periodic (of order 1) for all bounded continuous functions ${\mathcal F}:U\to {\mathbb{R}}$.
@article{IIMI_2005_31_1_a1,
     author = {L. I. Danilov},
     title = {On {Weyl} almost periodic measure-valued functions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {79--98},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a1/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On Weyl almost periodic measure-valued functions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2005
SP  - 79
EP  - 98
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a1/
LA  - ru
ID  - IIMI_2005_31_1_a1
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On Weyl almost periodic measure-valued functions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2005
%P 79-98
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a1/
%G ru
%F IIMI_2005_31_1_a1
L. I. Danilov. On Weyl almost periodic measure-valued functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 79-98. http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a1/