Adjoint Riemann--Stieltjes integral on the algebra of regulated functions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 3-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of adjoint Riemann–Stieltjes integral are defined. The concept of adjoint distribution are defined. Solvability of impulse system with adjoint distribution are proved.
@article{IIMI_2005_31_1_a0,
     author = {V. I. Rodionov},
     title = {Adjoint {Riemann--Stieltjes} integral on the algebra of regulated functions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--78},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a0/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - Adjoint Riemann--Stieltjes integral on the algebra of regulated functions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2005
SP  - 3
EP  - 78
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a0/
LA  - ru
ID  - IIMI_2005_31_1_a0
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T Adjoint Riemann--Stieltjes integral on the algebra of regulated functions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2005
%P 3-78
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a0/
%G ru
%F IIMI_2005_31_1_a0
V. I. Rodionov. Adjoint Riemann--Stieltjes integral on the algebra of regulated functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 31 (2005) no. 1, pp. 3-78. http://geodesic.mathdoc.fr/item/IIMI_2005_31_1_a0/

[1] Demyshev A. S., Rodionov V. I., “O preryvistykh funktsiyakh neskolkikh peremennykh”, Tez. dokl. Ros. univ.-akad. konf., v. 2, Izhevsk, 2004, 77–78

[2] Hönig Ch. S., Volterra–Stieltjes integral equations, Mathematical Studies, 16, North-Holland, Amsterdam, 1975, 152 pp. | MR

[3] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974, 480 pp. | MR

[4] Rodionov V. I., “O prostranstve regulyarno differentsiruemykh funktsii”, Izvestiya Instituta matematiki i informatiki UdGU. Izhevsk, 2004, no. 1(29), 3–32

[5] Kurtsveil Ya., “Ob obobschennykh obyknovennykh differentsialnykh uravneniyakh, obladayuschikh razryvnymi resheniyami”, PMM, 22:1 (1958), 27–45

[6] Rodionov V. I., “Kvaziintegralnye uravneniya v prostranstve preryvistykh funktsii”, Izvestiya Instituta matematiki i informatiki UdGU. Izhevsk, 1997, no. 2(10), 3–51

[7] Rodionov V. I., “Kvaziintegraly”, Differents. uravneniya, 36:6 (2000), 859

[8] Hildebrandt T. H., Introduction to the theory of integration, Academic Press, N.Y.–L., 1963, 385 pp. | MR

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 5-e izd., Nauka, M., 1981, 544 pp. | MR

[10] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 448 pp. | MR

[11] Tvrdý M., “Regulated functions and the Perron–Stieltjes integral”, Casopis pest. mat., 1989, no. 114, 187–209 | MR | Zbl

[12] L. A. Skornyakov (red.), Obschaya algebra, v. 1, Nauka, M., 1990, 592 pp. | Zbl

[13] Van der Varden B. L., Algebra, Nauka, M., 1976, 648 pp. | MR

[14] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, 5-e izd., Nauka, M., 1969, 656 pp.

[15] Zavalischin S. T., Sesekin A. N., Impulsnye protsessy: Modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR

[16] Samoilenko A. M., Perestyuk N. A., Differentsialnye uravneniya s impulsnym vozdeistviem, Vischa shkola, Kiev, 1987, 288 pp.

[17] Boyarintsev Yu. E., Regulyarnye i singulyarnye sistemy lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1980, 224 pp. | MR | Zbl

[18] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl

[19] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, ANO «Institut kompyuternykh issledovanii», M., 2002, 384 pp.

[20] Rodionov V. I., “Ob uravneniyakh so slabym operatorom”, Tez. dokl. Ros. univ.-akad. konf., v. 2, Izhevsk, 2004, 88–90

[21] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR