On scattering of the Schr\"odinger operator with non-local potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 29 (2004) no. 1, pp. 109-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Schrödinger operator of the form $H=$ $=-d^2/dx^2+V$ acting in $L^2(R)$ where $V=\varepsilon W(x)+\lambda (\cdot ,\varphi _0)\varphi _0$ is non-local potential and $W(x),\, \varphi _0(x)$ are decreasing functions for $|x| \to \infty$. The existence and completeness of the wave operators is proved. We investigate the asymptotic behaviour of solutions of the Lippmann–Schwinger equation and study the scattering amplitude.
@article{IIMI_2004_29_1_a5,
     author = {M. S. Smetanina},
     title = {On scattering of the {Schr\"odinger} operator with non-local potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {109--124},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a5/}
}
TY  - JOUR
AU  - M. S. Smetanina
TI  - On scattering of the Schr\"odinger operator with non-local potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2004
SP  - 109
EP  - 124
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a5/
LA  - ru
ID  - IIMI_2004_29_1_a5
ER  - 
%0 Journal Article
%A M. S. Smetanina
%T On scattering of the Schr\"odinger operator with non-local potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2004
%P 109-124
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a5/
%G ru
%F IIMI_2004_29_1_a5
M. S. Smetanina. On scattering of the Schr\"odinger operator with non-local potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 29 (2004) no. 1, pp. 109-124. http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a5/

[1] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningr. un-ta, L., 1975, 240 pp.

[2] Kheine V., Koen M., Ueir D., Teoriya psevdopotentsiala, Mir, M., 1973, 560 pp.

[3] Smetanina M. S., Chuburin Yu. P., “Ob uravnenii Shredingera dlya kristallicheskoi plenki s nelokalnym potentsialom”, Vestnik Udmurtskogo universiteta. Matematika, 2003, 19–31

[4] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya rasseyaniya, Mir, M., 1982, 448 pp. | MR

[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 360 pp. | MR

[6] Faddeev L. D., Yakubovskii O. A., Lektsii po kvantovoi mekhanike dlya studentov–matematikov, Izd-vo Leningr. un-ta, L., 1980, 200 pp.