On the one-dimensional Schr\"odinger equation with a perturbed non-local steplike potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 29 (2004) no. 1, pp. 95-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Schrödinger operator of the form $H=-\tfrac{d^2}{dx^2}+V$ acting in $L^2(R)$ where $V=V_0\theta (x)+\varepsilon (\cdot ,\varphi _0) \varphi _0$ is non-local potential. We prove that the unique level (i.e. eigenvalue or resonance of the operator $H$) exists for all sufficiently small $\varepsilon $ and $V_0=V_0(\varepsilon)$. We investigate the asymptotic behaviour of this level. (If $V_0(\varepsilon)$ is separated from zero the levels are absent.) We study the asymptotic behaviour of eigenfunctions for $|x|\to \infty$.
@article{IIMI_2004_29_1_a4,
     author = {N. I. Pletnikova},
     title = {On the one-dimensional {Schr\"odinger} equation with a perturbed non-local steplike potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a4/}
}
TY  - JOUR
AU  - N. I. Pletnikova
TI  - On the one-dimensional Schr\"odinger equation with a perturbed non-local steplike potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2004
SP  - 95
EP  - 108
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a4/
LA  - ru
ID  - IIMI_2004_29_1_a4
ER  - 
%0 Journal Article
%A N. I. Pletnikova
%T On the one-dimensional Schr\"odinger equation with a perturbed non-local steplike potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2004
%P 95-108
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a4/
%G ru
%F IIMI_2004_29_1_a4
N. I. Pletnikova. On the one-dimensional Schr\"odinger equation with a perturbed non-local steplike potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 29 (2004) no. 1, pp. 95-108. http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a4/

[1] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningr. un-ta, L., 1975, 240 pp.

[2] Kheine V., Koen M., Ueir D., Teoriya psevdopotentsiala, Mir, M., 1973, 560 pp.

[3] Chuburin Yu. P., “Ob operatore Shredingera s malym potentsialom tipa vozmuschennoi stupenki”, Teor. i mat. fizika, 120:2 (1999), 277–290 | MR | Zbl

[4] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, Mir, M., 1982, 488 pp. | MR

[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 432 pp. | MR

[6] Chuburin Yu. P., “O malykh vozmuscheniyakh operatora Shredingera s periodicheskim potentsialom”, Teor. i mat. fizika, 110:3 (1997), 443–453 | MR | Zbl

[7] Edvards R., Funktsionalnyi analiz, Mir, M., 1969, 1072 pp.

[8] Smetanina M. S., “Ob uravnenii Shredingera s nelokalnym potentsialom”, Izvestiya Instituta matematiki i informatiki UdGU. Izhevsk, 2002, no. 3(26), 99–114

[9] Smetanina M. S., Chuburin Yu. P., “Ob uravnenii Shredingera dlya kristallicheskoi plenki s nelokalnym potentsialom”, Vestnik Udmurtskogo universiteta. Matematika, 2003, 19–31