On levels of the one-dimensional discrete Schr\"odinger operator with a decreasing small potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 29 (2004) no. 1, pp. 85-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a one-dimensional discrete Schrödinger operator with a decreasing small potential. The existence of the unique level (eigenvalue or resonanse) near the boundary points $\pm 2$ of the essential spectrum is proved. We investigate the asymptotic behaviour of these levels.
@article{IIMI_2004_29_1_a3,
     author = {L. E. Morozova and Yu. P. Chuburin},
     title = {On levels of the one-dimensional discrete {Schr\"odinger} operator with a decreasing small potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {85--94},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a3/}
}
TY  - JOUR
AU  - L. E. Morozova
AU  - Yu. P. Chuburin
TI  - On levels of the one-dimensional discrete Schr\"odinger operator with a decreasing small potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2004
SP  - 85
EP  - 94
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a3/
LA  - ru
ID  - IIMI_2004_29_1_a3
ER  - 
%0 Journal Article
%A L. E. Morozova
%A Yu. P. Chuburin
%T On levels of the one-dimensional discrete Schr\"odinger operator with a decreasing small potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2004
%P 85-94
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a3/
%G ru
%F IIMI_2004_29_1_a3
L. E. Morozova; Yu. P. Chuburin. On levels of the one-dimensional discrete Schr\"odinger operator with a decreasing small potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 29 (2004) no. 1, pp. 85-94. http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a3/

[1] Tsikon Kh., Freze R., Kirsh V., Saimon B., Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990, 408 pp. | MR

[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 360 pp. | MR

[3] Damanik D., Hundertmark D., Killip R., Simon B., Variational estimates for discrete Schrödinger operators with potentials of indefinite sign, arXiv: mp_arc 02–451

[4] Lakaev S. N., Muminov M. E., “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shredingera na reshetke”, Teor. i matem. fizika, 135:3, 478–503 | MR | Zbl

[5] Geiler V. A., “Dvumernyi operator Shredingera s odnorodnym magnitnym polem i ego vozmuscheniya periodicheskimi potentsialami nulevogo radiusa”, Algebra i analiz, 3:3 (1991), 1–48 | MR

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 432 pp. | MR

[7] Chuburin Yu. P., “O malykh vozmuscheniyakh operatora Shredingera s periodicheskim potentsialom”, Teor. i matem. fizika, 110:3, 443–453 | MR | Zbl

[8] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1966, 340 pp. | Zbl