Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2004_29_1_a1, author = {L. I. Danilov}, title = {Uniform approximation of {Stepanov} almost periodic functions}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {33--48}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a1/} }
TY - JOUR AU - L. I. Danilov TI - Uniform approximation of Stepanov almost periodic functions JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2004 SP - 33 EP - 48 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a1/ LA - ru ID - IIMI_2004_29_1_a1 ER -
%0 Journal Article %A L. I. Danilov %T Uniform approximation of Stepanov almost periodic functions %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2004 %P 33-48 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a1/ %G ru %F IIMI_2004_29_1_a1
L. I. Danilov. Uniform approximation of Stepanov almost periodic functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 29 (2004) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a1/
[1] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953, 396 pp.
[2] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978, 205 pp. | MR | Zbl
[3] Danilov L. I., Mnogoznachnye pochti periodicheskie otobrazheniya i ikh secheniya, Dep. v VINITI 24.09.93, No 2465-B93, FTI UrO RAN, Izhevsk, 1993, 36 pp.
[4] Danilov L. I., “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izvestiya otdela matematiki i informatiki UdGU. Izhevsk, 1993, no. 1, 16–78 | Zbl
[5] Danilov L. I., O secheniyakh mnogoznachnykh pochti periodicheskikh otobrazhenii, Dep. v VINITI 31.07.95, No 2340-B95, Red. «Sib. matem. zhurn.», Novosibirsk, 1995, 39 pp.
[6] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Matem. sb., 188:10 (1997), 3–24 | DOI | MR | Zbl
[7] Dolbilov A. M., Shneiberg I. Ya., “Pochti periodicheskie mnogoznachnye otobrazheniya i ikh secheniya”, Sib. matem. zhurn., 32:2 (1991), 172–175 | MR | Zbl
[8] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl
[9] Bressan A., Colombo G., “Extensions and selections of maps with decomposable values”, Studia Math., 90 (1988), 69–86 | MR | Zbl
[10] Danilov L. I., Ivanov A. G., “K teoreme o potochechnom maksimume v pochti periodicheskom sluchae”, Izv. vuzov. Matematika, 1994, no. 6, 50–59 | MR | Zbl
[11] Danilov L. I., “O mnogoznachnykh pochti periodicheskikh otobrazheniyakh, zavisyaschikh ot parametra”, Vestnik Udmurtskogo universiteta. Matematika. Izhevsk, 1994, no. 2, 29–44 | Zbl
[12] Danilov L. I., O superpozitsii pochti periodicheskikh mnogoznachnykh otobrazhenii i funktsii, Dep. v VINITI 31.01.95, No 262-B95, FTI UrO RAN, Izhevsk, 1995, 31 pp.
[13] Danilov L. I., O pochti periodicheskikh meroznachnykh funktsiyakh, I, Dep. v VINITI 05.05.96, No 1434-B96, FTI UrO RAN, Izhevsk, 1996, 72 pp.
[14] Danilov L. I., Ob operatorakh superpozitsii, sokhranyayuschikh pochti periodichnost, Dep. v VINITI 26.05.98, No 1589-B98, FTI UrO RAN, Izhevsk, 1998, 64 pp.
[15] Danilov L. I., “O pochti periodicheskikh mnogoznachnykh otobrazheniyakh”, Matem. zametki, 68:1 (2000), 82–90 | DOI | MR | Zbl
[16] Danilov L. I., Ravnomernaya approksimatsiya pochti periodicheskikh po Stepanovu funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii, Dep. v VINITI 21.02.03, No 354-B2003, FTI UrO RAN, Izhevsk, 2003, 70 pp.
[17] Danilov L. I., “O ravnomernoi approksimatsii pochti periodicheskikh po Stepanovu funktsii”, Izv. vuzov. Matematika, 1998, no. 5, 10–18 | MR
[18] Pankov A. A., Ogranichennye i pochti periodicheskie resheniya nelineinykh differentsialno-operatornykh uravnenii, Nauk. dumka, Kiev, 1985 | MR
[19] Danilov L. I., On equi-Weyl almost periodic selections of multivalued maps, 2003, arXiv: math.CA/0310010 | MR
[20] Andres J., “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential Inclusions and Optimal Control, LN in Nonlin. Anal., 2, eds. J. Andres, L. Górniewicz, P. Nistri, 1998, 35–50
[21] Andres J., Bersani A. M., Lésniak K., “On some almost-periodicity problems in various metrics”, Acta Appl. Math., 65:1–3 (2001), 35–57 | DOI | MR | Zbl