Uniform approximation of Stepanov almost periodic functions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 29 (2004) no. 1, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study uniform approximation of Stepanov almost periodic functions on relative Bohr compacts.
@article{IIMI_2004_29_1_a1,
     author = {L. I. Danilov},
     title = {Uniform approximation of {Stepanov} almost periodic functions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a1/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Uniform approximation of Stepanov almost periodic functions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2004
SP  - 33
EP  - 48
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a1/
LA  - ru
ID  - IIMI_2004_29_1_a1
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Uniform approximation of Stepanov almost periodic functions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2004
%P 33-48
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a1/
%G ru
%F IIMI_2004_29_1_a1
L. I. Danilov. Uniform approximation of Stepanov almost periodic functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 29 (2004) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/IIMI_2004_29_1_a1/

[1] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953, 396 pp.

[2] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978, 205 pp. | MR | Zbl

[3] Danilov L. I., Mnogoznachnye pochti periodicheskie otobrazheniya i ikh secheniya, Dep. v VINITI 24.09.93, No 2465-B93, FTI UrO RAN, Izhevsk, 1993, 36 pp.

[4] Danilov L. I., “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izvestiya otdela matematiki i informatiki UdGU. Izhevsk, 1993, no. 1, 16–78 | Zbl

[5] Danilov L. I., O secheniyakh mnogoznachnykh pochti periodicheskikh otobrazhenii, Dep. v VINITI 31.07.95, No 2340-B95, Red. «Sib. matem. zhurn.», Novosibirsk, 1995, 39 pp.

[6] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Matem. sb., 188:10 (1997), 3–24 | DOI | MR | Zbl

[7] Dolbilov A. M., Shneiberg I. Ya., “Pochti periodicheskie mnogoznachnye otobrazheniya i ikh secheniya”, Sib. matem. zhurn., 32:2 (1991), 172–175 | MR | Zbl

[8] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl

[9] Bressan A., Colombo G., “Extensions and selections of maps with decomposable values”, Studia Math., 90 (1988), 69–86 | MR | Zbl

[10] Danilov L. I., Ivanov A. G., “K teoreme o potochechnom maksimume v pochti periodicheskom sluchae”, Izv. vuzov. Matematika, 1994, no. 6, 50–59 | MR | Zbl

[11] Danilov L. I., “O mnogoznachnykh pochti periodicheskikh otobrazheniyakh, zavisyaschikh ot parametra”, Vestnik Udmurtskogo universiteta. Matematika. Izhevsk, 1994, no. 2, 29–44 | Zbl

[12] Danilov L. I., O superpozitsii pochti periodicheskikh mnogoznachnykh otobrazhenii i funktsii, Dep. v VINITI 31.01.95, No 262-B95, FTI UrO RAN, Izhevsk, 1995, 31 pp.

[13] Danilov L. I., O pochti periodicheskikh meroznachnykh funktsiyakh, I, Dep. v VINITI 05.05.96, No 1434-B96, FTI UrO RAN, Izhevsk, 1996, 72 pp.

[14] Danilov L. I., Ob operatorakh superpozitsii, sokhranyayuschikh pochti periodichnost, Dep. v VINITI 26.05.98, No 1589-B98, FTI UrO RAN, Izhevsk, 1998, 64 pp.

[15] Danilov L. I., “O pochti periodicheskikh mnogoznachnykh otobrazheniyakh”, Matem. zametki, 68:1 (2000), 82–90 | DOI | MR | Zbl

[16] Danilov L. I., Ravnomernaya approksimatsiya pochti periodicheskikh po Stepanovu funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii, Dep. v VINITI 21.02.03, No 354-B2003, FTI UrO RAN, Izhevsk, 2003, 70 pp.

[17] Danilov L. I., “O ravnomernoi approksimatsii pochti periodicheskikh po Stepanovu funktsii”, Izv. vuzov. Matematika, 1998, no. 5, 10–18 | MR

[18] Pankov A. A., Ogranichennye i pochti periodicheskie resheniya nelineinykh differentsialno-operatornykh uravnenii, Nauk. dumka, Kiev, 1985 | MR

[19] Danilov L. I., On equi-Weyl almost periodic selections of multivalued maps, 2003, arXiv: math.CA/0310010 | MR

[20] Andres J., “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential Inclusions and Optimal Control, LN in Nonlin. Anal., 2, eds. J. Andres, L. Górniewicz, P. Nistri, 1998, 35–50

[21] Andres J., Bersani A. M., Lésniak K., “On some almost-periodicity problems in various metrics”, Acta Appl. Math., 65:1–3 (2001), 35–57 | DOI | MR | Zbl