Problem of viability for the system restriction with time lag
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 28 (2003) no. 2, pp. 3-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analogue of theorem Nagumo about viability for Banach space is established. Concrete example is considered.
@article{IIMI_2003_28_2_a0,
     author = {V. N. Baranov},
     title = {Problem of viability for the system restriction with time lag},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--102},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2003_28_2_a0/}
}
TY  - JOUR
AU  - V. N. Baranov
TI  - Problem of viability for the system restriction with time lag
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2003
SP  - 3
EP  - 102
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2003_28_2_a0/
LA  - ru
ID  - IIMI_2003_28_2_a0
ER  - 
%0 Journal Article
%A V. N. Baranov
%T Problem of viability for the system restriction with time lag
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2003
%P 3-102
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2003_28_2_a0/
%G ru
%F IIMI_2003_28_2_a0
V. N. Baranov. Problem of viability for the system restriction with time lag. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 28 (2003) no. 2, pp. 3-102. http://geodesic.mathdoc.fr/item/IIMI_2003_28_2_a0/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii, M., 2002, 384 pp.

[2] Andrianov D. L., Tselevoe upravlenie i kraevye zadachi dlya makroekonomicheskikh modelei s posledeistviem, Avtoref. dokt. diss., Izhevsk, 1994, 29 pp.

[3] Andrianov D. L., Polushkina G. L., “Prognoz-analiz-reshenie”, Bankovskie tekhnologii, 1997, no. 8, 54–57

[4] Baranov V. N., “Chislennye metody integrirovaniya sistem differentsialnykh uravnenii s razryvnoi pravoi chastyu”, Izvestiya Instituta matematiki i informatiki UdGU. Izhevsk, 2000, no. 3, 3–30

[5] Baranov V. N., “Ob odnom chislennom metode integrirovaniya differentsialnykh uravnenii s razryvnoi pravoi chastyu”, Materialy Mezhdunarodnoi konferentsii studentov i aspirantov po fundamentalnym naukam, Lomonosov, 4, Izd-vo MGU, M., 2000, 319

[6] Baranov V. N., “Chislennye metody integrirovaniya sistem differentsialnykh uravnenii s razryvnoi pravoi chastyu”, Problemy teoreticheskoi i prikladnoi matematiki, Trudy XXXII regionalnoi molodezhnoi konferentsii (Ekaterinburg, 29 yanvarya–2 fevralya 2001 g.), 87–91 | Zbl

[7] Baranov V. N., “Obobschenie teoremy Nagumo dlya sistem differentsialnykh uravnenii s posledeistviem”, Tezisy dokladov 5-i Rossiiskoi universitetsko-akademicheskoi nauchno-prakticheskoi konferentsii, v. 10, Izhevsk, 2001, 8 | Zbl

[8] Baranov V. N., “Teorema Nagumo dlya sistemy s posledeistviem”, Izvestiya Instituta matematiki i informatiki UdGU. Izhevsk, 2002, no. 2, 11–14 | MR

[9] Baranov V. N., “Teorema Nagumo dlya sistem s posledeistviem”, Vestnik Udmurtskogo universiteta. Matematika. Izhevsk, 2002, no. 1, 29–32 | MR

[10] Baranov V. N., “Dostatochnye usloviya vyzhivaniya dlya sistem s posledeistviem”, Vestn. Tambovskogo un-ta. Tambov, 8:3 (2003), 343

[11] Baranov V. N., “Dostatochnye usloviya lokalnoi vyzhivaemosti dlya sistem s posledeistviem”, Differents. uravneniya, 39:6 (2003), 858 | MR

[12] Baranov V. N., “Zadachi vyzhivaniya dlya sistem s posledeistviem”, Izvestiya Instituta matematiki i informatiki UdGU. Izhevsk, 2003, no. 2, 3–114 | MR

[13] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. Mat. in-ta AN SSSR, 169, 1985, 194–251 | MR

[14] Guseinov Kh. G., Subbotin A. I., Ushakov V. N., “Proizvodnye mnogoznachnykh otobrazhenii i ikh primenenie v igrovykh zadachakh upravleniya”, Problemy upr. i teorii informatsii, 14:3 (1985), 1–14 | MR

[15] Guseinov Kh. G., Ushakov V. N., “Ob infinitizimalnykh konstruktsiyakh v teorii obobschennykh dinamicheskikh sistem, I”, Differents. uravneniya, 34:2 (1998), 157–165 | MR | Zbl

[16] Guseinov Kh. G., Ushakov V. N., “Ob infinitizimalnykh konstruktsiyakh v teorii obobschennykh dinamicheskikh sistem, II”, Differents. uravneniya, 34:4 (1998), 457–464 | MR | Zbl

[17] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiz., 5:3 (1965), 395–453

[18] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, M., 1974, 478 pp. | MR

[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, M., 1989, 624 pp. | MR

[20] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, M., 1959 | MR

[21] Kurzhanskii A. B., Filippova T. F., “Ob opisanii mnozhestva vyzhivayuschikh traektorii differentsialnogo vklyucheniya”, Dokl. AN SSSR, 289:1 (1986), 38–41 | MR

[22] Kurzhanskii A. B., Filippova T. F., “Ob optimalnom opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents. uraneniya, 23:8 (1987), 1303–1315 | MR

[23] Kurzhanskii A. B., Filippova T. F., “Differentsialnye vklyucheniya s fazovymi ogranicheniyami. Metod vozmuschenii”, Tr. matem. in-ta RAN, 211, 1995, 304–315 | MR

[24] Neznakhin A. A., Ushakov V. N., Postroenie yadra vyzhivaemosti s ogranichennym bluzhdaniem dlya differentsialnogo vklyucheniya, Dep. v VINITI 16.12.00 No 3083-B00, 24 pp.

[25] Neznakhin A. A., Ushakov V. N., “Setochnyi metod priblizhennogo postroeniya yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, Raspredelennye sistemy: optimizatsiya i prilozheniya v ekonomike i naukakh ob okruzhayuschei srede, Sbornik dokladov k Mezhdunarodnoi konferentsii, Nauchnoe izdanie, UrO RAN, Ekaterinburg, 2000, 156–158

[26] Nikolskii M. S., “Ob odnoi zadache osuschestvleniya zadannogo dvizheniya. Gibkie sistemy”, Dokl. RAN, 350:6 (1996), 739–741 | MR

[27] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 357 pp. | MR

[28] Satimov N., Azamov A., “K zadache izbezhaniya stolknovenii v nelineinykh sistemakh”, Dokl. AN UzSSR, 1974, no. 6, 3–5 | MR

[29] Tonkov E. L., “Dinamicheskie zadachi vyzhivaniya”, Vestnik Permskogo gos. tekh. un-ta. Funktsion.-differents. uravneniya, 1997, no. 4, spets. vyp., 138–148

[30] Ushakov V. N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya–ukloneniya”, Izv. AN SSSR. Tekhn. kibernetika, 1980, no. 4, 32–45

[31] Fazylov A. Z., “Dostatochnye usloviya optimalnosti dlya zadachi vyzhivaniya”, PMM, 61:3 (1997), 535–537 | MR | Zbl

[32] Fazylov A. Z., “K zadache izbezhaniya stolknovenii”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1987, no. 3, 30–36 | MR

[33] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, M., 1985, 223 pp. | MR

[34] Filippova T. F., Zadachi o vyzhivaemosti dlya differentsialnykh vklyuchenii, Dis. ...d-ra fiz.-mat. nauk: 01.01.02, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 1992, 266 pp.

[35] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Per. s angl., Mir, M., 1984, 421 pp. | MR

[36] Aubin J.-P., Viability theory, Birkhauser, Boston, 1991, 326 pp. | MR | Zbl

[37] Aubin J.-P., Mutational and Morphological Analysis. Tools for Shape Regulation and Optimization, 1998, 352 pp. | MR

[38] Aubin J.-P., “A survey of viability theory”, SIAM J. Contr. and Optim., 28:4 (1990), 749–788 | DOI | MR | Zbl

[39] Blagodatskih V. I., “Sufficient condition for optimality in problems with state constraints”, Appl. Math. and Optim., 7:2 (1981), 149–157 | DOI | MR

[40] Haddad G., “Monotone trajectories of differential inclusions and functional-differential inclusions with memory”, Israel J. of Math., 31 (1984), 83–100 | MR

[41] Nagumo M., “Uber die Lage der Intergralkurven gewohnliker Differential gleichungen”, Proc. Phys. Math. Soc. Japan, 24 (1942), 551–559 | MR | Zbl