The criterion of complete controllability of linear time-varying system in the critical case
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 81-86
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the conditions when the linear nonstationary system is totally controllable at the segment or does not possess this property.
@article{IIMI_2002_2_a22,
author = {L. I. Rodina and E. L. Tonkov},
title = {The criterion of complete controllability of linear time-varying system in the critical case},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {81--86},
year = {2002},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2002_2_a22/}
}
TY - JOUR AU - L. I. Rodina AU - E. L. Tonkov TI - The criterion of complete controllability of linear time-varying system in the critical case JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2002 SP - 81 EP - 86 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2002_2_a22/ LA - ru ID - IIMI_2002_2_a22 ER -
%0 Journal Article %A L. I. Rodina %A E. L. Tonkov %T The criterion of complete controllability of linear time-varying system in the critical case %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2002 %P 81-86 %N 2 %U http://geodesic.mathdoc.fr/item/IIMI_2002_2_a22/ %G ru %F IIMI_2002_2_a22
L. I. Rodina; E. L. Tonkov. The criterion of complete controllability of linear time-varying system in the critical case. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 81-86. http://geodesic.mathdoc.fr/item/IIMI_2002_2_a22/
[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR
[2] Chang A., “An algebraic characterization of controllability”, IEEE Trans. Aut. Control, 10:1 (1965), 112–114 | DOI
[3] Levakov A. A., “K upravlyaemosti lineinykh nestatsionarnykh sistem”, Differents. uravneniya, 23:5 (1987), 798–806 | MR | Zbl
[4] Minyuk S. A., “K teorii polnoi upravlyaemosti lineinykh nestatsionarnykh sistem”, Differents. uravneniya, 26:3 (1990), 414–420 | MR | Zbl
[5] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t matem. NAN Belarusi, Minsk, 1999, 408 pp. | MR