On remote points and butterfly-points
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 26 (2002) no. 3, pp. 115-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved for second countable topological spaces without isolated points, that every remote point in the remainder of Chech–Stone compactification is a butterfly-point.
@article{IIMI_2002_26_3_a2,
     author = {S. A. Logunov},
     title = {On remote points and butterfly-points},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {115--120},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_26_3_a2/}
}
TY  - JOUR
AU  - S. A. Logunov
TI  - On remote points and butterfly-points
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 115
EP  - 120
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_26_3_a2/
LA  - ru
ID  - IIMI_2002_26_3_a2
ER  - 
%0 Journal Article
%A S. A. Logunov
%T On remote points and butterfly-points
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 115-120
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_26_3_a2/
%G ru
%F IIMI_2002_26_3_a2
S. A. Logunov. On remote points and butterfly-points. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 26 (2002) no. 3, pp. 115-120. http://geodesic.mathdoc.fr/item/IIMI_2002_26_3_a2/

[1] Blaszczyk A., Szymanski A., “Some nonnormal subspaces of the Cech–Stone compactifications of a discrete space”, Proc. 8-th Winter School on Abstract Analysis (Prague, 1980), 73

[2] Douwen van E. K., “Why certain C'ech–Stone remainders are not homogeneous”, Colloq. Math., 41 (1979), 45–52 | MR | Zbl

[3] Douwen van E. K., “Remote points”, Dissert. Math., 188 (1980), 95 | MR

[4] Dow A., “Remote points in spaces with $\pi$-weight $\omega_1$”, Fund. Math., 124 (1984), 197–205 | MR | Zbl

[5] Logunov S., “On hereditary normality of compactifications”, Topology Appl., 20 (1996), 35–39 | MR

[6] Logunov S., “On hereditary normality of zero-dimentional spaces”, Topology Appl., 18 (1999), 25–31 | MR

[7] Mill van J., “An easy proof that $\beta N\setminus N\setminus\{p\}$ is non-normal”, Ann. Math. Silesianea, 2:2 (1984), 81–84 | MR

[8] Rajagopalan M., “$\beta N-N-\{p\}$ is not normal”, Journal of the Indian Math. Soc., 36 (1972), 173–176 | MR | Zbl

[9] Shapirovskii B. E., “O vlozheniyakh ekstremalno nesvyaznykh prostranstv v kompaktnye khausdorfovy prostranstva, $b$-tochki i ves tochechno normalnykh prostranstv”, DAN SSSR, 223 (1987), 1083–1086