On Scr\"odinger equation with non-local potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 26 (2002) no. 3, pp. 99-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Schrödinger operator of the form $H=-d^2/dx^2+V$ acting in $L^2({\mathbf R})$ where $V=\varepsilon W(x)+\lambda(\cdot,\phi _0)\phi_0$ is non-local potential. It is proved, that the unique level (i. e. eigenvalue or resonance of the operator $H$) exists for $V=\lambda(\cdot,\phi_0)\phi_0$ for all sufficiently small $\lambda$. We investigate the asymptotic behaviour of level for a small $\lambda$. We prove that there are no levels for $V=\varepsilon W(x)+\lambda(\cdot,\phi_0)\phi_0$ for all sufficiently small $\varepsilon$, if $\lambda \not=0$.
@article{IIMI_2002_26_3_a1,
     author = {M. S. Smetanina},
     title = {On {Scr\"odinger} equation with non-local potential},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {99--114},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_26_3_a1/}
}
TY  - JOUR
AU  - M. S. Smetanina
TI  - On Scr\"odinger equation with non-local potential
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 99
EP  - 114
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_26_3_a1/
LA  - ru
ID  - IIMI_2002_26_3_a1
ER  - 
%0 Journal Article
%A M. S. Smetanina
%T On Scr\"odinger equation with non-local potential
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 99-114
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_26_3_a1/
%G ru
%F IIMI_2002_26_3_a1
M. S. Smetanina. On Scr\"odinger equation with non-local potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 26 (2002) no. 3, pp. 99-114. http://geodesic.mathdoc.fr/item/IIMI_2002_26_3_a1/

[1] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningrad. un-ta, L., 1975, 240 pp.

[2] Kheine V., Koen M., Ueir D., Teoriya psevdopotentsiala, Mir, M., 1973, 560 pp.

[3] Albeverio S., Gestezi F., Kheeg-Kron R., Kholden Kh., Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991, 568 pp. | MR

[4] Chuburin Yu. P., “O popadanii sobstvennogo znacheniya (rezonansa) operatora Shredingera na granitsu zony”, Teor. i mat. fizika, 126:2 (2001), 196–205 | DOI | MR | Zbl

[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 360 pp. | MR

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 432 pp. | MR

[7] Gadyl'shin R., On local perturbations of Shrödinger operator in axis, Preprint in the Texas Math Physics archive, No 02–65, 2002 | MR

[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya rasseyaniya, Mir, M., 1982, 448 pp. | MR

[9] Shabat B. V., Vvedenie v kompleksnyi analiz, v. II, Funktsii neskolkikh peremennykh, Nauka, M., 1976, 400 pp. | MR

[10] Edvards R., Funktsionalnyi analiz, Mir, M., 1969, 1072 pp.