On the asymptotic behavior of solutions to a class of differential-difference equations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 41-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The forced delay differential equation $$\dot x(t)=a(t)x(t-\omega),\ t\in\mathbb{R}_{+}$$ with complex coefficient $a(t)$ satisfying the condition $a(t+\omega)=Ma(t)$, $M\in\mathbb{C}$, is being considered. Effective sufficient conditions for asymptotic behaviour of solutions were obtained, in particular, the conditions for solutions' boundedness, convergence to some constant value and unboundedness.
@article{IIMI_2002_25_2_a9,
     author = {M. I. Dodkin},
     title = {On the asymptotic behavior of solutions to a class of differential-difference equations},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {41--42},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a9/}
}
TY  - JOUR
AU  - M. I. Dodkin
TI  - On the asymptotic behavior of solutions to a class of differential-difference equations
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 41
EP  - 42
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a9/
LA  - ru
ID  - IIMI_2002_25_2_a9
ER  - 
%0 Journal Article
%A M. I. Dodkin
%T On the asymptotic behavior of solutions to a class of differential-difference equations
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 41-42
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a9/
%G ru
%F IIMI_2002_25_2_a9
M. I. Dodkin. On the asymptotic behavior of solutions to a class of differential-difference equations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 41-42. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a9/

[1] Rekhlitskii Z. I., “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii v banakhovom prostranstve”, DAN SSSR, 111:1 (1956), 29–32

[2] Rekhlitskii Z. I., “Ob ustoichivosti reshenii periodicheskikh differentsialno-raznostnykh uravnenii”, Izv. AN SSSR, 30:5 (1966), 971–974