Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2002_25_2_a7, author = {V. M. Verzhbitsky}, title = {Generality of proof of theorems about iterative methods convergence}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {35--38}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a7/} }
TY - JOUR AU - V. M. Verzhbitsky TI - Generality of proof of theorems about iterative methods convergence JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2002 SP - 35 EP - 38 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a7/ LA - ru ID - IIMI_2002_25_2_a7 ER -
%0 Journal Article %A V. M. Verzhbitsky %T Generality of proof of theorems about iterative methods convergence %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2002 %P 35-38 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a7/ %G ru %F IIMI_2002_25_2_a7
V. M. Verzhbitsky. Generality of proof of theorems about iterative methods convergence. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 35-38. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a7/
[1] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 742 pp. | MR | Zbl
[2] Ulm S. Yu., “Ob iteratsionnykh metodakh s posledovatelnoi approksimatsiei obratnogo operatora”, Izv. AN ESSR. Fiz., matem., 16:4 (1967), 403–411 | MR
[3] Verzhbitskii V. M., “O skhodimosti posledovatelnostei elementov banakhovykh prostranstv k nulyam nelineinykh operatorov”, Vestn. Perm. gos. tekh. un-ta, 2002 (to appear)
[4] Verzhbitskii V. M., Chislennye metody (lineinaya algebra i nelineinye uravneniya), Vyssh. shkola, M., 2000, 266 pp.
[5] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shkola, M., 2002, 848 pp.