Generality of proof of theorems about iterative methods convergence
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 35-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two theorems are presented, which allow to omit the end of proofs of convergence theorems about fast-convergent iterative methods of solving of nonlinear operator equations in Banach spaces.
@article{IIMI_2002_25_2_a7,
     author = {V. M. Verzhbitsky},
     title = {Generality of proof of theorems about iterative methods convergence},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {35--38},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a7/}
}
TY  - JOUR
AU  - V. M. Verzhbitsky
TI  - Generality of proof of theorems about iterative methods convergence
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 35
EP  - 38
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a7/
LA  - ru
ID  - IIMI_2002_25_2_a7
ER  - 
%0 Journal Article
%A V. M. Verzhbitsky
%T Generality of proof of theorems about iterative methods convergence
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 35-38
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a7/
%G ru
%F IIMI_2002_25_2_a7
V. M. Verzhbitsky. Generality of proof of theorems about iterative methods convergence. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 35-38. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a7/

[1] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 742 pp. | MR | Zbl

[2] Ulm S. Yu., “Ob iteratsionnykh metodakh s posledovatelnoi approksimatsiei obratnogo operatora”, Izv. AN ESSR. Fiz., matem., 16:4 (1967), 403–411 | MR

[3] Verzhbitskii V. M., “O skhodimosti posledovatelnostei elementov banakhovykh prostranstv k nulyam nelineinykh operatorov”, Vestn. Perm. gos. tekh. un-ta, 2002 (to appear)

[4] Verzhbitskii V. M., Chislennye metody (lineinaya algebra i nelineinye uravneniya), Vyssh. shkola, M., 2000, 266 pp.

[5] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shkola, M., 2002, 848 pp.