Optimal stabilization of linear control dynamic processes of parabolic type
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 107-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The invention of the controllable thermonuclear reaction was one of the most actual problems of the XX century. In this work even the simplest model of the optimum stabilization shows that the invention of the closed controllable dynamic system with reverse motion allows us to achieve the point in the most effective way.
@article{IIMI_2002_25_2_a31,
     author = {M. G. Yusif-zade},
     title = {Optimal stabilization of linear control dynamic processes of parabolic type},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {107--110},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a31/}
}
TY  - JOUR
AU  - M. G. Yusif-zade
TI  - Optimal stabilization of linear control dynamic processes of parabolic type
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 107
EP  - 110
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a31/
LA  - ru
ID  - IIMI_2002_25_2_a31
ER  - 
%0 Journal Article
%A M. G. Yusif-zade
%T Optimal stabilization of linear control dynamic processes of parabolic type
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 107-110
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a31/
%G ru
%F IIMI_2002_25_2_a31
M. G. Yusif-zade. Optimal stabilization of linear control dynamic processes of parabolic type. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 107-110. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a31/

[1] Butkovskii A. G., Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975, 568 pp.

[2] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978, 464 pp. | MR