A criterion of partial stability for a linear system of differential-difference equations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 103-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotical partial stability problem for a solution of a differential-difference equation with a constant matrix is considered. It is reduced to the analysis of situation of zeros of a polynomial defined by the system matrix. This polynomial can be constructed effectively.
@article{IIMI_2002_25_2_a30,
     author = {K. M. Chudinov},
     title = {A criterion of partial stability for a linear system of differential-difference equations},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {103--106},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a30/}
}
TY  - JOUR
AU  - K. M. Chudinov
TI  - A criterion of partial stability for a linear system of differential-difference equations
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 103
EP  - 106
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a30/
LA  - ru
ID  - IIMI_2002_25_2_a30
ER  - 
%0 Journal Article
%A K. M. Chudinov
%T A criterion of partial stability for a linear system of differential-difference equations
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 103-106
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a30/
%G ru
%F IIMI_2002_25_2_a30
K. M. Chudinov. A criterion of partial stability for a linear system of differential-difference equations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 103-106. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a30/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, 1-e izd., Nauka, M., 1991, 280 pp. | MR | Zbl

[2] Ilin V. A., Poznyak E. G., Lineinaya algebra, Nauka, M., 1974, 296 pp. | MR

[3] Rekhlitskii Z. I., “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom v banakhovom prostranstve”, Dokl. AN SSSR, 111:1 (1956), 29–32

[4] Vorotnikov V. I., Ustoichivost dinamicheskikh sistem po otnosheniyu k chasti peremennykh, Nauka, M., 1991, 288 pp. | MR | Zbl