Solutions bounded on the axis for linear inhomogeneous systems of differential equations of Ito
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 101-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Main result is that for linear systems of Ito differential equations $dx(t)=A(t)x(t)dt+B(t)x(t)w(dt)+f(t)dt$, $t\in \mathbb{R}$, the bounded (in mean) solution problem is solvable for any bounded $f(t)$ only if the system is exponentially stable.
@article{IIMI_2002_25_2_a29,
     author = {A. V. Chistyakov},
     title = {Solutions bounded on the axis for linear inhomogeneous systems of differential equations of {Ito}},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {101--102},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a29/}
}
TY  - JOUR
AU  - A. V. Chistyakov
TI  - Solutions bounded on the axis for linear inhomogeneous systems of differential equations of Ito
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2002
SP  - 101
EP  - 102
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a29/
LA  - ru
ID  - IIMI_2002_25_2_a29
ER  - 
%0 Journal Article
%A A. V. Chistyakov
%T Solutions bounded on the axis for linear inhomogeneous systems of differential equations of Ito
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2002
%P 101-102
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a29/
%G ru
%F IIMI_2002_25_2_a29
A. V. Chistyakov. Solutions bounded on the axis for linear inhomogeneous systems of differential equations of Ito. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 25 (2002) no. 2, pp. 101-102. http://geodesic.mathdoc.fr/item/IIMI_2002_25_2_a29/